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ABSTRACT 
Calibrated and intent-aware recommendation are recent approaches 
to recommendation that have apparent similarities. Both try, to a 
certain extent, to cover the user’s interests, as revealed by her user 
profle. In this paper, we compare them in detail. On two datasets, 
we show the extent to which intent-aware recommendations are 
calibrated and the extent to which calibrated recommendations 
are diverse. We consider two ways of defning a user’s interests, 
one based on item features, the other based on subprofles of the 
user’s profle. We fnd that defning interests in terms of subpro-
fles results in highest precision and the best relevance/diversity 
trade-of. Along the way, we defne a new version of calibrated 
recommendation and three new evaluation metrics. 
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1 INTRODUCTION 
It is well-known that recommender systems that focus only on 
rating prediction accuracy or even recommendation relevance may 
bring problems: for example, they can narrow a user’s horizons, 
even creating so-called “flter bubbles” [14], by recommending items 
that are either too obvious, popular or similar to ones in the user’s 
profle; they can lead to monotony in a user’s interactions with the 
system [4]; and they may under-represent a user’s more peripheral 
interests by concentrating on her dominant interests [19]. Hence, 
prediction accuracy or recommendation relevance should not be 
the only measures of recommender system quality [5]. For example, 
in some domains it may be desirable that recommendations also 
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be novel or serendipitous and that a set of recommendations be 
diverse [6, 12]. 

In 2018, Steck proposed calibrated recommendations [19]. A set 
of recommendations is calibrated if it refects the diferent interests 
of the user, as revealed by the user profle, and with the appro-
priate proportions. In [19], interests are defned in terms of item 
features (such as movie genres). If 75% of the movies in a user’s 
profle are horror movies and 25% are sci-f movies, then a set of 
recommendations is calibrated if it exhibits these genres in roughly 
these proportions.1 

Dating from 2011 to the current day, intent-aware recommender 
systems diversify a set of recommendations, inspired by work in 
Information Retrieval (IR) [1, 16, 21]. Faced with an ambiguous 
query such as “jaguar”, an IR system cannot know whether the user 
intended to search for cats, cars or operating systems. Informally, 
intent-aware methods in IR ensure that the search results include 
at least one document for each possible intention. Analogously, 
intent-aware recommender systems ensure that the set of recom-
mendations contains items that cover each of the user’s interests, 
as revealed by her profle [8, 22, 24]. The user’s interests are defned 
as a probability distribution over a set of aspects A. In the xQuAD 
and c-plsa systems, for example, aspects are item features [22, 24]. 
In the SPAD system, aspects are subsets of the items in the user’s 
profle, referred to as subprofles [8]. 

Presented in this way, calibrated and intent-aware recommender 
systems seem very similar: both try to cover the interests revealed 
by the user’s profle. The main diference lies in their objective. 
Aside from recommendation relevance, the main goal of a cali-
brated recommender system is to produce recommendations that 
refect the user’s interests in the right proportions. A calibrated 
recommendation set might be diverse, but diversity is not an ex-
plicit goal.2 By contrast, diversity is the main goal of intent-aware 
systems. This is achieved by something similar to calibration and 
so a set of recommendations might be calibrated to some extent. 
But, as we will see (Section 2), intent-aware methods defne their 
equivalent to calibration in a relevance-based way: the proportion 
of items in a recommendation set that cover an aspect are modu-
lated by how relevant those items are to that aspect. Hence, in the 
example above, more or fewer than 75% of the recommendations 
may be horror movies. 

1This example simplifes by ignoring the possibility that a movie might have more 
than one genre.
2In fact, Steck defnes a diversity-enhanced calibrated recommender system, which 
includes diversity as an explicit objective, alongside calibration [19]. We will discuss it 
in Section 6.5. 
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This paper compares these two to determine how well each 
achieves three objectives: calibration, relevance and diversity. More 
specifcally, the paper’s contributions are: 

• We defne a new variant of Steck’s calibrated recommender 
systems, one which calibrates with respect to subprofles, 
rather than item features. 

• We defne three new evaluation metrics, corresponding to 
existing metrics that are defned using item features. The 
new metrics use subprofles, rather than item features. Using 
the new metrics alongside the existing ones gives a more 
balanced view of the performance of the recommender algo-
rithms. 

• We present an empirical comparison using all these metrics 
on two datasets to see the extent to which calibrated and 
intent-aware recommenders do produce calibrated recom-
mendations, relevant recommendations and diverse sets of 
recommendations. 

The comparison shows that, in these datasets, subprofles are better 
than genres; it shows that in some cases intent-aware recommen-
dations are calibrated and that calibrated recommendations are 
diverse; but it shows that the best relevance/diversity trade-ofs are 
achieved by intent-aware methods that use subprofles. 

The rest of this paper is organized as follows. In Sections 2 and 
3, we summarize intent-aware and calibrated recommendation, re-
spectively. Section 4 briefy contrasts intent-aware and calibrated 
recommendations. In Section 5, we give the details of the datasets, 
metrics and methodology used in our experiments. Section 6 ana-
lyzes the experimental results. 

2 INTENT-AWARE RECOMMENDATION 
Intent-aware recommender systems aim to determine a recommen-
dation set of size N items, denoted here by RL ∗ , that optimizes 
an objective function that balances relevance with diversity. Most 
commonly, the objective function is a linear combination of the 
relevance of the items in the recommendation set and the diversity 
of that set, the trade-of between the two being controlled by a 
parameter λ (0 ≤ λ ≤ 1): 

RL ∗ = arg max (1 − λ)s(RL) + λ divIA(RL) (1) 
RL, |RL |=N 

Typically, s is a modular function that is the sum of the predicted 
relevance scores s(u, i) of each item i recommended to user u, i.e. 
s(RL) = 

Í 
i ∈RL s(u, i). divIA(RL) measures the diversity of the set 

RL. But this is not simply a measure of how diferent the items are 
from each other, as it would be in more conventional approaches to 
diversity [2, 18, 25]. Instead, it is defned in terms of coverage of the 
user’s interests, but with coverage modulated by recommendation 
relevance (below). 

In Vargas’s adaptation to recommender systems [23] of San-
tos et al.’s Query Aspect Diversifcation framework (xQuAD) [16], 
divIA(RL) is defned as follows: !Õ Ö 

divIA(RL) = p(a |u) 1 − (1 − p(i |u, a)) (2) 
a ∈A i ∈RL 

in which a user u’s interests are formulated as a probability dis-
tribution p(a |u) over aspects a ∈ A. p(i |u, a) is the probability 

of choosing an item i from a set of candidate recommendations 
RS , produced by a conventional recommender algorithm, given an 
aspect a and user u. 

Finding an optimal solution to Eq. 1 is intractable in general, since 
it requires considering all possible sets of recommendations RL. 
However, when the objective function is monotone and submodular, 
a 1 − 1 approximation to the optimal solution can be computed e 
greedily [13], where e is Euler’s number. It is easy to adapt the 
proof given in [1] to show that, where divIA is defned as in Eq. 2, 
it is indeed monotone and submodular [7]. It follows easily that Eq. 
1 is also monotone and submodular. 

In the greedy algorithm, a conventional recommender algorithm 
(which we refer to as the baseline recommender), produces a set of 
recommended items, RS , for user u. For each recommended item i 
in RS , it also produces a score, s(u, i), that estimates the relevance of 
recommended item i to user u. Then, the greedy algorithm re-ranks 
RS by iteratively inserting into ordered result list RL the item i from 
RS that maximizes a function, fobj (i, RL): 

fobj(i, RL) = (1 − λ)s(u, i) + λ divIA(i, RL) (3) 
where divIA(i, RL) is the marginal gain in diversity after inserting 
item i into the set RL. divIA(i, RL) is defned as: 

divIA(i, RL) = divIA({i} ∪ RL) − divIA(RL) (4) 
Using Eq. 2, we can obtain the following [1, 16, 23]:Õ Ö 

divIA(i, RL) = [p(a |u)p(i |u, a) (1 − p(j |u, a))] (5) 
a ∈A j ∈RL 

We now show ways of instantiating divIA(RL) and divIA(i, RL), 
difering in how aspects are defned. 

2.1 xQuAD 
In xQuAD, the aspects are explicit item features F , such as gen-
res, i.e. A = F . Hence we will write p(f |u) instead of p(a |u) and 
p(i |u, f ) instead of p(i |u, a). Let Fi be the subset of F that describes 
item i (e.g. the genres of movie i) and let Iu denote the items that are 
in the user’s profle. Then in Eqs. 2 and 5, p(f |u) can be estimated 
as: 

|{i ∈ Iu : f ∈ Fi }| 
p(f |u) = Í (6) 

f ′ ∈F |{i ∈ Iu : f ′ ∈ Fi }| 
p(i |u, f ) can be estimated as: 

1(i, f )s(u, i)
p(i |u, f ) = Í (7) 

j ∈RS 1(j, f )s(u, j)

where 1(i, f ) = 1 if f ∈ Fi and 0 otherwise. 

2.2 SPAD 
Recently, we have introduced Subprofle-Aware Diversifcation 
(SPAD) [7, 8, 10]. SPAD is a form of intent-aware recommenda-
tion, hence it uses the same objective function (Eq. 2) and the same 
function for greedy re-ranking (Eq. 3). But it difers in the way it 
models the user’s interests. Instead of item features, it uses subpro-
fles S as aspects, i.e. A = S. Hence, we write p(S |u) and p(i |u, S)
instead of p(a |u) and p(i |u, a) in the two equations. 

A subprofle is a set of items that capture one of the user’s inter-
ests. In SPAD, subprofles are mined from the user’s liked-item-set, 
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Iu 
+. In the case of systems that use implicit feedback, the user’s 
profle Iu contains items that the user has shown an interest in and 
therefore, I+ = Iu . In the case of systems that use explicit feedback u 
in the form of numeric ratings, for example, then the liked-item-set 
I+ ⊆ Iu will be just those items to which the user has given a high u 
rating (e.g. 4s or 5s on a 1–5 rating scale). 

We have published several ways to mine the subprofles from 
the liked-item-set [7, 10]. In this paper, we will use the one that 
we used in [9] and which most often outpeforms the others. By 
this algorithm, there is a candidate subprofle for each item i ∈ Iu 

+. 
Informally, the subprofle for item i ∈ I+ should contain other u 
members of I+ that together represent one user interest. Specifcally, u 
the candidate subprofle for each i ∈ I + contains i itself and also j ∈u 
I+ if j’s nearest-neighbours contain i , i.e. the candidate subprofle u 
for i is {j ∈ I+ : i ∈ KNN(j), i , j}∪{i}. KNN(j) are the most similar u 
items to j in I , for which we use cosine similarity on the rating 
vectors. We will denote the size of this set by knn. The candidate 
subprofles are pruned to a fnal set of subprofles by excluding those 
that are wholly contained in any of the others. We will denote user 
u’s fnal set of subprofles by Su . 

Returning to Eq. 2, in SPAD p(S |u) is estimated as: 

|S |
p(S |u) = Í (8) 

S ′ ∈Su |S ′| 

and p(i |u, S), the probability of choosing i from recommendations 
RS given subprofle S and user u, is estimated as: 

1(i, S)s(u, i)
p(i |u, S) = Í (9) 

j ∈RS 1(j, S)s(u, j) 

where item i is related to subprofle S , as follows: Ð(
1 if i ∈ j ∈S KNN(j)

1(i, S) = (10)
0 otherwise 

where KNN(j) is again the set of j’s nearest-neighbours in I . In other 
words, i must be a neighbour of a member of S . We will denote the 
size of this set by kind , since it need not be the same as knn. 

3 CALIBRATED RECOMMENDATION 
Calibrated recommendation aims to produce a recommendation 
set that covers the user’s diferent interests in the proportions that 
they occur in the user’s profle [19]. 

3.1 Calibrated recommendation using features 
In [19], the degree of calibration, CKL(p, q), is quantifed by taking 
the Kullback-Leibler divergence between two probability distribu-
tions: the frst, p(f |u), is the distribution of features f across the 
items in user u’s liked-item-set; the second, q(f |u), is the distri-
bution of features f across the items in a recommendation set RL. 
These two distributions are defned in terms of another distribution, 
p(f |i), which is the distribution of features for each item i . A simple 
defnition of p(f |i) is that, for each feature f possessed by an item 
i , p(f |i) will be equal and such that 

Í 
f p(f |i) = 1 [19]. 

Specifcally, Steck defnes p(f |u) as: Í 
i ∈I + wu,ip(f |i)u p(f |u) = Í (11) 

i ∈I + wu,iu 

In this defnition, wu,i is a weight for item i . As an example, Steck 
suggests that the weight could be based on how recently item i was 
consumed by user u. However, in the rest of his paper, he takes 
wu,i = 1 for all u and i , and we do the same in this paper. 

Steck defnes q(f |u) as: Í 
i ∈RL wr (i)p(f |i)

q(f |u) = Í (12) 
i ∈RL wr (i) 

wr (i) denotes the weight of item i due to its rank, r (i) in RL, although 
again both in his paper, and in ours, wr (i) = 1. 

The degree of calibration is the Kullback-Leibler divergence of 
the two distributions, taking p as the target: Õ 

CKL(p, q) = KL(p | |q̃) = p(f |u) log 
p(f |u) 

(13) 
q̃(f |u)

f 

Because Kullback-Leibler divergence diverges if q(f |u) = 0 and 
p(f |u) > 0, Steck uses q̃ instead of q: 

q̃ = (1 − α)q(f |u) + αp(f |u) (14) 

with a small positive value of α so that q ≈ q̃. Steck uses α = 0.01, 
and we do the same. 

Now that we can measure the degree of calibration, we can defne 
an objective function. It is a linear combination of the relevance of 
the items in the recommendation set and the degree of calibration 
of that set: 

RL ∗ = arg max (1 − λ)s(RL) − λ cal(p, q) (15) 
RL, |RL |=N 

Here, while p is diferent for each user, q is diferent for each rec-
ommendation set. 

Steck proves that Eq. 15 satisfes the conditions for a greedy 
re-ranking approach to fnd a 1 − 1 approximation to the opti-e 
mal solution. The greedy re-ranking approach uses the following 
objective function: 

fobj (i, RL) = (1 − λ)s(u, i) + λ cal(i, RL) (16) 

with cal(i, RL) = −(CKL(p, q(RL ∪ {i})) − CKL(p, q(RL))). 
We will refer to this instantiation of calibrated recommendation 

as CRF . 

3.2 Calibrated recommendation using 
subprofles 

Steck defnes user interests in terms of item features. But the sub-
profle idea that we introduced for SPAD opens an opportunity 
to defne a new variant of calibrated recommendation, one which 
uses subprofles instead of features, much as SPAD uses subprofles 
where xQuAD uses features. We refer to this variant as CRS . 

In CRS , the distributions p and q (Eqs. 11 and 12) are defned in 
the same way, writing S in place of f . Í 

i ∈I + wu,ip(S |i)
u p(S |u) = Í (17) Í i ∈Iu 
+ wu,i 

i ∈RL wr (i)p(S |i)
q(S |u) = Í (18) 

i ∈RL wr (i) 
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To defne p(S |i), which replaces p(f |i) in these equations, we use 
1p(S |i) = 

|Si | , where Si is the set of user u’s fnal subprofles that 
item i is related to (using Eq. 10). 

4 INTENT-AWARE VS. CALIBRATED 
As we have mentioned, there is an apparent similarity between 
intent-aware and calibrated recommendation. Both try to cover 
the user’s diferent interests, as revealed by her profle. Indeed, for 
the latter, covering the tastes and interests in the same proportion 
as they occur in the user’s profle is the main goal. Intent-aware 
recommendation may result in calibrated recommendations, but 
it does not directly aim to cover the user’s interests in the same 
proportion as they occur in the user’s profle. As we saw, it mod-
ulates coverage by recommendation relevance. We illustrate this 
diference with an informal example.3 

Consider a user who listens to jazz 70% of the time and to rock 
music 30% of the time. Suppose that the goal is to recommend a list 
of top-10 recommendations. Calibrated recommendation tries to 
generate 10 recommendations such that seven (70%) are jazz and 
the remaining three (30%) are rock. An intent-aware approach, such 
as xQuAD, considers how much an item satisfes a given aspect 
(genre in this case) through p(i |u, f ). Suppose the frst four songs 
that the recommender includes in the recommendation list are jazz 
songs which this user is likely to choose from a recommendation 
list, i.e. p(i |u, f = jazz) is high for each of these songs, i . Now 
suppose we are trying to decide whether to add a ffth piece of 
jazz to the recommendation list. It will be penalized because each 
of the four existing items j in the recommendation list have high 
p(j |u, f = jazz): see the factor 

Î 
j ∈RL(1 − p(j |u, f )) in Eq. 5. A ffth 

jazz song might only be included if it can overcome the ‘penalty’ 
imposed by the songs that have been added to the recommendation 
list already. Because of this, the fnal top-10 might not have seven 
jazz songs; it may even have more rock than jazz. On the other hand, 
if the frst seven songs to be added to the recommendation list are 
(informally speaking) not jazzy enough for this user’s tastes (more 
precisely, if they have very low values for p(i |u, f = jazz)), then it is 
possible that more jazz songs will be added to the recommendation 
list. The fnal top-10 might not have three rock songs; it may even 
have no rock at all. 

5 EXPERIMENTS 
In this section, we compare intent-aware and calibrated recommen-
dations. We reveal the extent to which intent-aware approaches 
produce calibrated recommendations. We evaluate calibrated rec-
ommendation more thoroughly than was done in [19]. Steck’s goal 
in [19] was just “to illustrate that the proposed approach [i.e. cali-
brated recommendation] works as expected”. Hence, he used just 
one dataset. He compared calibrated recommendation with just 
its baseline. While he did measure recall (as defned in [17]), his 
focus was on measuring calibration. Here, we will use two datasets; 
we will compare two forms of calibrated recommendation (CRF 
and CRS ) to two forms of intent-aware recommendation (xQuAD 
and SPAD); and we will measure calibration but also precision and 

3As before, the example simplifes by ignoring the possibility that a movie might have 
more than one genre. 

Table 1: Datasets 

ML20M TasteProfle 
# of users 137,765 375,749 
# of items 20,631 190,629 

# of interactions 9,990,460 19,328,665 

diversity. In the case of diversity, we will show results for four dif-
ferent metrics, and we will explore the trade-of the recommenders 
make between precision and diversity. 

5.1 Datasets 
We follow [19] in using datasets that have implicit ratings, since, as 
Steck says, these are more common in real applications. We use the 
MovieLens 20 Million dataset (ML20M)4 (which is the same dataset 
used in [19]) and the Taste Profle Subset dataset (TasteProfle)5. 

In the original ML20M dataset, all users have at least 20 movies 
in their profle and movies have one or more of 19 genres. We 
preprocess the ML20M in the same way as [19]. Specifcally, we 
binarize the numeric ratings by dropping ratings lower than 4 
stars and we eliminate movies that have no genre information. The 
resulting dataset has ∼ 10 million implicit ratings made by ∼ 140k 
users for ∼ 21k movies. 

TasteProfle contains counts of the number of times a user has 
listened to a song. Each song appears in the Million Song Dataset, 
from which we can take information about up to 21 genres.6 We 
eliminate songs that have no genre information and users who 
have fewer than 20 songs in their profle. We also binarize the song 
counts so that we get an implicit dataset; the dataset is binarized in 
the same way in [11]. The resulting dataset is comprised of ∼ 19 
million implicit ratings made by ∼ 375k users for ∼ 190k songs. 

The characteristics of the datasets after preprocessing are sum-
marized in Table 1. 

5.2 Evaluation metrics 
For recommendation relevance, we measure Precision. For diversity, 
we use Intra-List Diversity (ILD) [25] and α-nDCG [3]. To measure 
the degree of calibration, we use CKL, the defnition of which has 
been already presented as Eq. 13. 

Intra-List Diversity, ILD, measures the average pairwise distance 
of the items in a recommendation set [25]. 

Õ Õ2
ILD(L) = dist(i, j) (19)

|L|(|L| − 1) 
i ∈L j ∈L, j,i 

Most commonly, dist(i, j) is the Jaccard distance between Fi and 
Fj , the set of features of items i and j, respectively: 

|Fi ∩ Fj |dist(i, j) = (20)
|Fi ∪ Fj | 

4https://grouplens.org/datasets/movielens/20m/
5https://labrosa.ee.columbia.edu/millionsong/tasteprofle 
6http://www.ifs.tuwien.ac.at/mir/msd/partitions/msd-MAGD-genreAssignment.cls 
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α-nDCG is based on nDCG but it is aspect and redundancy- a fast alternative least-squares matrix factorization recommender 
aware, which makes it a measure of diversity: (MF) that works for implicit and explicit datasets [15]. It has two 

hyper-parameters: d , the number of latent factors; and α , the con- 
Õ Õ fdence level factor. The values that optimize the precision on the 1 1 

α-nDCG(L) = validation sets are selected. For ML20M, we fnd d = 40 and α = 6.α-IDCG log2(r(i, L) + 1)
i ∈L f ∈F For TasteProfle, d = 100 and α = 20. 

CRS and SPAD have hyper-parameters knn and kind (see Section 
2.2). To fnd their values, we follow the same methodology as in 
[10] to select values with best average α-nDCGF on the validation 
set. For both ML20M and TasteProfle, we fnd that knn = 10 and 

 (21) 
Ö 

rel(i |u, f ) (1 − α rel(j |u, f ))
j ∈L, 

r(j,L)<r(i,L) 
kind = 10 for CRS , and it turns out that these are the values for 
SPAD also. 

Once the hyper-parameter values have been found, for each 
user we generate a recommendation set RS , where |RS | = 100 by 
using MF on the union of the training and validation sets. Then, 
we re-rank each RS to produce ranked lists RL using each of the 
re-ranking algorithms. We do this for diferent values of λ from the 
set {0.1, 0.2, 0.3, . . . , 1.0}. Then, from each RL we select the top-N 
recommendations, N = 10, and compute the metrics we defned in 

where α-IDCG is the highest possible value of α-nDCG where the 
recommendation set is made of ideally diversifed relevant items, L 
is the set of recommended items (of size N ), r(i, L) is the position 
of i in L, and rel(i |u, f ) is 1 if item i has feature f and is relevant to 
user u but 0 otherwise. α is the parameter that controls the penalty 
for redundancy. We use α = 0.5, as in [23]. 

These two diversity metrics and the calibration metric are defned 
with respect to the item features F . This gives CRF and xQuAD an 
advantage, since they make use of these features in their re-ranking. 

Section 5.2. This is in line with the observation that algorithms can be expected 
to perform well regarding the metrics they were developed for 
[19, 20]. 6 RESULTS 

To obtain a more rounded picture of the relative performances 
of the algorithms, we propose to adapt CKL, ILD and α-nDCG to 
produce versions of these metrics that use subprofles instead of 
item features (below). Of course, these new metrics will favour CRS 
and SPAD, but taken together with the original metrics we will get 
a balanced view. 

The new version of ILD is obtained simply by using a diferent 
defnition of dist(i, j), one that uses subprofles instead of item 
features: 

|Si ∩ Sj |dist(i, j) = (22)
|Si ∪ Sj |

where Si , Sj are the set of a user’s fnal subprofles that item i 
and j are related to (Eq. 10). We will refer to ILD measured by item 
features as ILDF and ILD measured by subprofles as ILDS . 

We modify α-nDCG by replacing rel(i |u, f ) with rel(i |u, S) where 
S is a subprofle and such that rel(i |u, S) is 1 if item i is related to 
subprofle S and user u but 0 otherwise. We will refer to α-nDCG 
measured by item features as α-nDCGF and α-nDCG measured by 
subprofles as α-nDCGS 

Finally, we modify CKL to use subprofles instead of item features 
by replacing the distributions p and q over features in Eq. 13 with 
distributions over subprofles, much as we did when we defned 
CRS in Section 3.2. We will refer to CKL measured by item features 
as CKL 

F and CKL measured by subprofles as CKL 
S . 

5.3 Methodology 
Our experiments use the methodology adopted in our previous 
work, e.g. [10]. After preprocessing the datasets, we randomly par-
tition the ratings into training, validation and test sets such that 
60% of each user’s ratings are in the training set, 20% of them are 
in the validation set and 20% are in the test set. 

We compare CRF , CRS , xQuAD and SPAD. All four recom-
menders use greedy re-ranking, therefore they need a baseline 
recommender, whose recommendation sets are re-ranked. We use 

In this section, we report our empirical comparison of CRF , CRS , 
xQuAD and SPAD on the ML20M and TasteProfle datasets. First, we 
compare their performances on the two versions of the calibration 
metric, CKL 

F and CKL 
S . Next, we see how they afect the relevance 

of the baseline recommendations by measuring Precision. Then, 
we look at their efect on ‘pure’ diversity metrics, ILDF and ILDS , 
and relevance-aware diversity metrics, α-nDCGF and α-nDCGS . 
Finally, we look at the trade-of between precision and diversity 
measured by the ILD metrics. 

6.1 Calibration results 
The calibration results are shown in Figure 1. It is important to keep 
in mind that for CKL (unlike other results in this paper) smaller 
values are better: smaller values mean better coverage of the user’s 
interests. 

Figure 1a shows results on the ML20M dataset when calibration 
is measured using item features, CKL 

F . CRF performs best: it has 
the smallest values of CKL 

F for all values of λ. This result is to be 
expected: CRF re-ranks baseline recommendations using the CKL 

F 

metric. 
We hypothesized that intent-aware approaches would result in 

calibrated recommendations to a certain extent. xQuAD tries to 
cover diferent user interests defned by item features, and so it 
should do well for this metric. Indeed, it can be seen in Figure 1a 
that, for all values of λ, xQuAD results in good calibration: not as 
good as CRF , of course, but better than CRS and SPAD. However, 
for all values of λ, even CRS and SPAD recommendations are more 
calibrated than the baseline. This is noteworthy, since CRS and 
SPAD make no use of item features. 

Figure 1b shows results on ML20M when calibration is measured 
using subprofles, CKL 

S . This time, it is xQuAD and CRF that are 
at a disadvantage. We can see that, CRS performs best, as expected. 
But, for all values of λ, SPAD performs better than the baseline 
too. For smaller values of λ, xQuAD and CRF perform close to the 
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Figure 1: For ML20M and TasteProfle, CKL measured using features and subprofles for diferent values of λ. Values for MF are 
shown by dotted lines. 
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Figure 2: Precision values for diferent values of λ for 
ML20M and TasteProfle. Values for MF are shown by dot-
ted lines. 

baseline. But for larger values of λ, they perform worse than the 
baseline. 

Figures 1c and 1d show calibration on TasteProfle. The results 
are quite similar to those for ML20M. The diference is, when cali-
bration is measured by subprofles (Figure 1d), CRF only performs 
close to the baseline. 

6.2 Precision 
Figures 2a and 2b plot precision for diferent values of λ on ML20M 
and TasteProfle test sets, respectively. Consider ML20M frst. CRS 
and SPAD perform well. Precision only falls below the baseline for 
high values of λ: from 0.7 for CRS and from 0.8 for SPAD. CRF and 
xQuAD do not do so well: for many values of λ, their precision is 
lower than that of the baseline’s original recommended set. CRF 
sufers even more than xQuAD: its precision falls even more sharply 
as λ grows. These CRF results confrm those reported by Steck: he 
found that, for larger values of λ, CRF ’s accuracy drops quickly 
(although he measured recall rather than precision) [19]. We see 
similar results when we turn to the TasteProfle dataset. The main 
diferences are that, CRS and SPAD now achieve higher precision 
than the baseline for all values of λ; and CRF and xQuAD sufer 
smaller decreases in precision relative to the baseline than they did 

on ML20M. These results for precision show a clear preference for 
approaches that use subprofles, rather than item features. 

6.3 Diversity results 
In this subsection, we measure diversity in diferent ways, enabling 
us to see the extent to which calibrated recommendations are di-
verse recommendations. 

Figure 3 shows results for ILD. Figure 3a shows results on the 
ML20M dataset when ILD is measured using item features, ILDF . 
Surprisingly, CRF , which is not an algorithm that explicitly seeks to 
diversify result sets, achieves the highest values of ILDF . CRS and 
SPAD are at their usual disadvantage when a metric uses features. 
But, for all values of λ, their ILDF exceeds the baseline. xQuAD 
is another surprise. For all values of λ, it performs worse than 
the baseline. This appears to be an idiosyncratic result, specifc to 
this dataset. xQuAD’s ILDF on a number of datasets that contain 
explicit ratings, for example, usually exceeds the baseline [10, 23], 
and it exceeds the baseline by a small amount for most values of λ 
when we run it on ML20M without binarization (not shown here). 

When ILD is measured using subprofles, ILDS (Figure 3b), CRF 
and xQuAD are the ones at a disadvantage. Sure enough, their 
diversity according to this metric always falls below the baseline, 
with CRF worse than xQuAD. On the other hand, CRS and SPAD 
are at an advantage. SPAD, the algorithm that actually seeks to 
diversify, produces the most diverse results sets, better than the 
baseline recommender for all values of λ; CRS , which only seeks to 
calibrate its recommendations, produces result sets that are quite 
similar in diversity to those produced by the baseline. 

Figures 3c and 3d show ILD results on TasteProfle. Results for 
ILDS (Figure 3d) are similar to those for ML20M. The diference is 
ILDF (Figure 3c). For all values of λ, all of the re-ranking algorithms, 
including xQuAD, have higher values of ILDF than the baseline. 

The α-nDCG results are in Figure 4. Figure 4a shows results on 
the ML20M dataset when α-nDCG is measured using item features, 
α-nDCGF . For almost all values of λ, xQuAD performs better than 
the other re-ranking algorithms. For small values of λ, CRF is 
competitive with CRS and SPAD, but soon sufers from the largest 
decreases in α-nDCGF . CRS and SPAD perform similarly to each 
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Figure 3: For ML20M and TasteProfle, ILD measured using features and subprofles for diferent values of λ. Values for MF are 
shown by dotted lines. 
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Figure 4: For ML20M and TasteProfle, α-nDCG measured using features and subprofles for diferent values of λ. Values for 
MF are shown by dotted lines. 

other. Even though they are at a disadvantage, they achieve higher 
α-nDCGF than the baseline for all but large values of λ. 

Figure 4b shows ML20M results for α-nDCGS , where xQuAD 
and CRF are the algorithms that are at a disadvantage. SPAD always 
has higher α-nDCGS than all the other algorithms, including the 
baseline. CRS has higher α-nDCGS than the baseline, except when 
λ is large. xQuAD and CRF are never better than the baseline and 
perform particularly poorly as λ grows. 

Figures 4c and 4d show α-nDCG results on TasteProfle. Results 
for α-nDCGS (Figure 4d) are similar to those for ML20M. The 
diference is α-nDCGF (Figure 4c). Now, SPAD and CRS are always 
higher than the baseline, while xQuAD and CRF are similar to the 
baseline for small values of λ and fall a little below the baseline for 
large values of λ. 

The diversity results show that calibrated recommendations can 
be diverse as well. Approaches that use subprofles as aspects, CRS 
and SPAD, perform particularly well according to the relevance-
aware diversity metric, α-nDCG. In fact, SPAD increases diversity, 
no matter how it is measured, on both datasets for almost all values 
of λ. To aid visualization of the relevance/diversity trade-of better, 
the next subsection plots precision and ILD together. 

6.4 The precision/diversity trade-of 
Each subfgure in Figure 5 is divided into four by the dotted lines 
that plot the precision and ILD values of the MF baseline. When, for 
a given value of λ, a re-ranking algorithm improves both precision 
and ILD over the baseline, for example, it appears as a point in the 
top-right quadrant. 

We can see that across all four subfgures (i.e. for both datasets 
and both version of ILD), assuming that we regard precision and 
diversity as equally important, SPAD is best by far. It most often 
increases both precision and diversity. CRS is second best according 
to these visualizations. CRF and xQuAD are not competitive. 

6.5 Other results 
For completeness, we mention two approaches to diversifcation 
whose results we do not show because they clutter the plots but 
are not competitive. 

The frst is Maximal Marginal Relevance (MMR) [2]. In MMR, 
there is no attempt to cover the user’s interests. Instead, the item 
that gets greedily inserted into the re-ranked list is one that is rele-
vant but ‘diferent’ from the ones that have already been inserted. 
‘Diference’ is usually measured using Eq. 20. While MMR has some 
of the highest values for ILD, as one would expect, since this is 
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Figure 5: For ML20M and TasteProfle, Precision vs. ILD trade-of plots measured using features and subprofles for diferent 
values of λ. Values for MF are shown by dotted lines. 

close to what it optimizes, it performs poorly on all other metrics, 
almost always having the worst values for precision, for example. 

The second is proposed by Steck in [19] with the goal of bringing 
extra diversity to calibrated recommendations. Steck introduces a 
diversity-promoting prior, p0(f ), to recommend from features that 
are not in the user’s profle. Specifcally, probability distribution 
p(f |u) is replaced by p̃(f |u) = βp0(f ) + (1 − β)p(f |u). There are 
no experimental results in [19]. But we have implemented it. We 
take p0(f ) to be the average p(f |u) over all the users [19]. The most 
useful results were obtained when we optimized β for α-nDCG 
rather than for precision or ILD. In this case, we found that, although 
the approach does improves diversity a little (measured by ILD), it 
harms precision and the CKL metrics. Overall, it was not competitive 
with the simpler forms of calibrated recommendation. 

7 CONCLUSIONS 
In this paper, we compared calibrated and intent-aware recommen-
dation. They have apparent similarities in that both try to cover the 
user’s interests to a certain extent. We showed that intent-aware 
approaches can defne interests in terms of item features (xQuAD) 
or subprofles (SPAD). In a similar vein, we defned a new instan-
tiation of calibrated recommendation that uses subprofles (CRS ) 
in place of features (CRF ). All four can be implemented by greedy 
re-ranking algorithms that ofer a 1 − 1 optimality guarantee. e 

On two publicly available datasets, we compared xQuAD and 
SPAD with CRF and CRS , measuring calibration, precision and di-
versity. Since existing calibration and diversity metrics use features 
in their formulation, re-ranking approaches using subprofles are at 
a disadvantage in the experiments. We adapted the existing metrics 
to produce new ones that use subprofles instead of features. By 
using all these metrics in the experiment, we get a more balanced 
view of the performance of the algorithms. 

We fnd that intent-aware recommendation results in calibrated 
recommendations to a certain extent, and calibrated recommenda-
tion results in diverse recommendations to a certain extent. We also 
see that re-ranking approaches using features, xQuAD and CRF , 
harm precision a lot. The re-ranking approaches that use subpro-
fles, SPAD and CRS , achieve the highest precision, achieve good 
calibration according to both calibration metrics, and achieve good 
diversity according to both α-nDCG metrics. SPAD also achieves 

good diversity according to both ILD metrics and sufers least from 
the relevance/diversity trade-of. 

Future work should include user trials and on-line evaluation 
to determine how users perceive calibrated and diverse recommen-
dations both where calibration and diversifcation are done with 
respect to features and to subprofles. 

ACKNOWLEDGMENTS 
This paper emanates from research supported by a grant from Sci-
ence Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 
which is co-funded under the European Regional Development 
Fund. 

REFERENCES 
[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009. 

Diversifying search results. In Procs. of the 2nd ACM International Conference on 
Web Search and Data Mining. 5–14. 

[2] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based 
Reranking for Reordering Documents and Producing Summaries. In Procs. of 
the 21st ACM SIGIR International Conference on Research and Development in 
Information Retrieval. ACM, 335–336. 

[3] Charles L A Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, 
Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. 2008. Novelty and diversity 
in information retrieval evaluation. In Procs. of the 31st ACM SIGIR International 
Conference on Research and Development in Information Retrieval. 659–666. 

[4] Farzad Eskandanian, Bamshad Mobasher, and Robin Burke. 2017. A Clustering 
Approach for Personalizing Diversity in Collaborative Recommender Systems. 
In Procs. of the 25th Conference on User Modeling, Adaptation and Personalization. 
ACM, 280–284. 

[5] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. 
2004. Evaluating collaborative fltering recommender systems. ACM Transactions 
on Information Systems (TOIS) 22, 1 (2004), 5–53. 

[6] Marius Kaminskas and Derek Bridge. 2016. Diversity, Serendipity, Novelty, and 
Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives in 
Recommender Systems. ACM Trans. Interact. Intell. Syst. 7, 1 (2016), 2:1–2:42. 

[7] Mesut Kaya. 2019. Subprofle Aware Diversifcation of Recommendations. Ph.D. 
Dissertation. School of Computer Science & Information Technology, University 
College Cork. 

[8] Mesut Kaya and Derek Bridge. 2018. Accurate and Diverse Recommendations 
Using Item-Based SubProfles. In Procs. of the Thirty-First International Florida 
Artifcial Intelligence Research Society Conference. AAAI, 462–467. 

[9] Mesut Kaya and Derek Bridge. 2018. Automatic Playlist Continuation using 
Subprofle-Aware Diversifcation. In Proceedings of the ACM Recommender Sys-
tems Challenge 2018. 

[10] Mesut Kaya and Derek Bridge. 2019. Subprofle-aware diversifcation of recom-
mendations. User Modeling and User-Adapted Interaction (2019). 

[11] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. 2016. Factor-
ization meets the item embedding: Regularizing matrix factorization with item 
co-occurrence. In Procs. of the 10th ACM Conference on Recommender Systems. 
59–66. 

158



Calibrated and Intent-Aware Recommendations 

[12] Sean M McNee, John Riedl, and Joseph A Konstan. 2006. Being Accurate is Not 
Enough: How Accuracy Metrics Have Hurt Recommender Systems. In Procs. of the 
CHI’06 Extended Abstracts on Human Factors in Computing Systems. 1097–1101. 

[13] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis 
of approximations for maximizing submodular set functionsâĂŤI. Mathematical 
programming 14, 1 (1978), 265–294. 

[14] Eli Pariser. 2011. The flter bubble: What the Internet is hiding from you. Penguin 
UK. 

[15] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. 2010. Fast ALS-based Matrix 
Factorization for Explicit and Implicit Feedback Datasets. In Procs. of the Fourth 
ACM Conference on Recommender Systems. ACM, 71–78. 

[16] Rodrygo L T Santos, Craig Macdonald, and Iadh Ounis. 2010. Exploiting Query 
Reformulations for Web Search Result Diversifcation. In Procs. of the 19th Inter-
national Conference on World Wide Web. 881–890. 

[17] Guy Shani and Asela Gunawardana. 2011. Evaluating Recommendation Systems. 
In Recommender Systems Handbook. Springer, 257–297. 

[18] Barry Smyth and Paul McClave. 2001. Similarity vs. diversity. In Procs. of the 
International Conference on Case-Based Reasoning. Springer, 347–361. 

[19] Harald Steck. 2018. Calibrated Recommendations. In Procs. of the 12th ACM 
Conference on Recommender Systems. 154–162. 

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark 

[20] Saúl Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. 2014. 
Coverage, redundancy and size-awareness in genre diversity for recommender 
systems. In Procs. of the 8th ACM Conference on Recommender systems. 209–216. 

[21] Saúl Vargas, Pablo Castells, and David Vallet. 2011. Intent-oriented Diversity in 
Recommender Systems. In Procs. of the 34th International ACM SIGIR Conference 
on Research and Development in Information Retrieval. ACM, 1211–1212. 

[22] Saúl Vargas, Pablo Castells, and David Vallet. 2012. Explicit Relevance Models 
in Intent-oriented Information Retrieval Diversifcation. In Procs. of the 35th 
ACM SIGIR International Conference on Research and Development in Information 
Retrieval. ACM, 75–84. 

[23] Saúl Vargas Sandoval. 2015. Novelty and Diversity Evaluation and Enhancement 
in Recommender Systems. Ph.D. Dissertation. Universidad Autónoma de Madrid, 
Spain. 

[24] Jacek Wasilewski and Neil Hurley. 2016. Intent-Aware Diversifcation Using a 
Constrained PLSA. In Procs. of the 10th ACM Conference on Recommender Systems. 
39–42. 

[25] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005. 
Improving recommendation lists through topic diversifcation. In Procs. of the 
14th International Conference on World Wide Web. 22–32. 

159


	Abstract
	1 Introduction
	2 Intent-Aware Recommendation
	2.1 xQuAD
	2.2 SPAD

	3 Calibrated Recommendation
	3.1 Calibrated recommendation using features
	3.2 Calibrated recommendation using subprofiles

	4 Intent-Aware vs. Calibrated
	5 Experiments
	5.1 Datasets
	5.2 Evaluation metrics
	5.3 Methodology

	6 Results
	6.1 Calibration results
	6.2 Precision
	6.3 Diversity results
	6.4 The precision/diversity trade-off
	6.5 Other results

	7 Conclusions
	Acknowledgments
	References



