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ABSTRACT
Intent-aware methods for recommendation diversification seek to
ensure that the recommended items cover so-called aspects, which
are assumed to define the user’s tastes and interests. Most typ-
ically, aspects are item features such as movie or music genres.
In recent work, we presented a novel intent-aware diversification
method, called Subprofile-Aware Diversification (SPAD). In SPAD,
aspects are subprofiles of the active user’s profile, detected using an
item-item similarity method. In this paper, we propose Community-
Aware Diversification (CAD), in which aspects are again subprofiles
but are detected indirectly through users who are similar to the
active user. We evaluate CAD’s precision and diversity on four
different datasets, and compare it with SPAD and an intent-aware
diversification method called xQuAD. We show that on two of the
datasets SPAD outperforms CAD, but for the other two CAD outper-
forms SPAD. For all datasets, both CAD and SPAD achieve higher
precision than xQuAD. When it comes to diversity, xQuAD some-
times results in more diverse recommendations but it is more prone
to paying for this diversity with decreases in precision. Arguably,
SPAD and CAD strike a better balance between the two.
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1 INTRODUCTION
A recommender system aims to help its users to discover resources
that align with their tastes and interests. Early recommender sys-
tems research focused on accurately predicting the user’s ratings
for unseen items or generating, from the unseen items, a top-n list
of relevant recommendations. However, it soon became clear that
being merely accurate or relevant is not enough [14]. The pursuit
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of accuracy or relevance alone may result in recommending items
that are too similar to each other or too similar to the user’s profile.
In many domains, recommendations must not only be accurate or
relevant, but they should also be novel to the user or serendipitous,
and a set of recommendations must be diverse [3, 9]. Here we focus
on the diversity of the recommendation set.

Diversity is one response to uncertainty. A recommender cannot
be certain of a user’s short-term or longer-term interests. Short-
term interests are, almost by definition, ephemeral and therefore
difficult to predict. The user’s profile can reveal her longer-term
interests. But there can still be uncertainty both because some user
profiles are small and others, while they may not be so small, will
contain preferences over different kinds of items. In the face of
uncertainty, ensuring that the recommendations are not too similar
to each other can make it more likely that one or more of the
recommendations will satisfy the user. However, a recommender
system must strike a balance between accuracy or relevance on the
one hand and diversity on the other hand. Indeed, early work on
diversification implied a trade-off between the two: increasing one
typically resulted in a decrease in the other [1].

Early work assumes that the diversity of a set of items is an
aggregate of the all-pairs dissimilarity of the items within the set,
where dissimilarity is measured by distance functions over item
meta-data (such as movie genres), item ratings or latent factors. A
common approach to producing a diverse set of recommendations
is to incrementally construct the set by adding the item with the
highest marginal contribution [2]. The marginal contribution is
typically a linear combination of the relevance of the item to the
user and its dissimilarity to the items in the result set so far. By this
approach, the balance between relevance and diversity is controlled
by a parameter of the linear combination. In principle, this allows
the degree of diversity to be personalized: different users could have
different values for this parameter (although this has been rare in
practice). Relevance is also personalized (since it is based on the
individual user’s profile). But the way that diversity is measured is
not personalized (since it is based simply on item dissimilarity). This
might be problematic. Consider, for instance, a music recommender.
For a user who only likes jazz and blues, a set of recommendations
containing only jazz and blues music, although low in diversity in
terms of item dissimilarity, may possibly be as diverse as the user
wishes. Another user who likes jazz, blues and some classical might
find a set of recommendations that contains only jazz and blues to be
lacking in diversity, even though the diversity measure is the same
in both cases. Note that this is not about how important diversity
is relative to relevance (which is controlled by the parameter that
we mentioned earlier); this is about what it means for a set to be
diverse, and how this can vary from one user to another.

More recent work takes a so-called intent-aware approach to
diversity. Intent-aware diversification seeks to ensure that the set
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of recommended items covers the different tastes and interests
revealed by the user’s profile; indeed, it seeks to ensure that they are
covered to approximately the same degree that they appear in the
user’s profile. In our examples from earlier, the first user will receive
jazz and blues recommendations, roughly in the proportion that
they appear in her profile; the second user will receive jazz, blues
and classical music recommendations similarly. The most common
way to characterize a user’s tastes and interests is as a probability
distribution over so-called aspects of the items. Aspects are either
explicit item features (such as movie genres or news categories)
or implicit item features such as the latent factors found, e.g., by a
matrix factorization recommender. Since the aspect probabilities
may differ across users, diversity is personalized to a certain extent.

There is a potential weakness in using item features (such as
genres, keywords or tags) for the aspects in intent-aware diversi-
fication. In some domains, features may not be readily available.
Even when available, they may fail to capture the subtleties of a
person’s preferences; they may be too coarse; they may be incon-
sistently applied to the items; and they may be noisy. In recent
work, we proposed a new intent-aware diversification framework
called Subprofile-Aware Diversification (SPAD). It does not use item
features at all. Instead, aspects are subprofiles of a user’s profile,
and we define subprofiles in terms of item-item similarities on the
items’ ratings vectors, rather than on item feature [12]. The main
contribution of SPAD is that, across multiple datasets, it can im-
prove both accuracy and diversity. This is notable because early
approaches to diversification sacrifice accuracy for diversity; even
other intent-aware approaches sometimes make this sacrifice.

In this paper, we propose a new method for detecting subprofiles
that can be used as the aspects in intent-aware diversification. We
call this new approach Community-Aware Diversification (CAD). It
uses user-user similarities on user ratings vectors, but it still results
in subprofiles, each of which is a subset of the items in the user’s
profile. Thus it explores the idea that a user’s community (similar
users) correlates with her tastes or interests (subprofiles).

We report the results of offline experiments on four real-world
datasets, each belonging to different domains. We analyze the
datasets and both the SPAD and CAD subprofiles. The results
show that on two datasets CAD performs better than SPAD; on
the other two SPAD performs better. In all cases, SPAD and CAD
have higher accuracy than an existing intent-aware diversification
method (xQuAD), while always increasing the diversity.

The rest of this paper is structured as follows. In the next section,
we briefly review related work. Section 3 contains the details of
our proposed intent-aware diversification framework, CAD. Details
of the datasets, recommenders and methodology in our experi-
ments can be found in Section 4. In Section 5, we analyze the CAD
and SPAD subprofiles for each dataset and we give accuracy and
diversity results for all four datasets.

2 RELATED WORK
There is a small amount of work in which diversity is explicitly a
part of the objective function that the recommender optimizes when
generating recommendations, e.g. [8, 16, 18]. But the dominant
approach to diversification is greedy re-ranking, e.g. [24].

2.1 Greedy re-ranking
The greedy re-ranking approach starts with a recommendation set
RS , generated by a baseline recommender (such as one that uses
matrix factorization). Each item in RS has a score, s(u, i), computed
by the baseline recommender. s(u, i) measures how relevant item i
is to user u. In greedy re-ranking, a ranked list of recommendations
RL is built by iteratively selecting items from RS based on an ob-
jective function that uses a linear combination whose parameter, λ,
balances each item’s score with the diversity that would be achieved
by adding the items to the already-selected members of RL:

fobj(i,RL) = (1 − λ)s(u, i) + λ div(i,RL) (1)

In the past, the diversity of a set of recommendations {i} ∪ RL
was given by the average all-pairs dissimilarity between the items
in the set (known as the intra-list distance, ILD [13, 17]), or their
sum, or the minimum dissimilarity between i and the members
of RL [2, 24]. However, as we argued in the previous section, this
measures diversity in the same way for all users.

More recently, under the name of Intent-Aware Diversification,
items have been chosen in such a way as to cover the user’s tastes
and interests, as revealed by her profile. These tastes and interests
are modeled by a probability distribution over a set of so-called
aspects. Most commonly, aspects are item features such as genres
or categories, keywords, or tags [22, 23]. For example, in a movie
recommender, if a user’s profile contains lots of Sci-Fi, a little Ro-
mance and a medium amount of Action, then RL can be constructed
from RS in a way that tries to preserve the same distribution in RL
as there is in the profile: several Sci-Fi movies, a few Action movies
and maybe one Romance, if there is room.

2.2 Subprofile-Aware Diversity
Recently, we proposed a new intent-aware diversification method
that does not rely on item features [10–12]. Subprofile-Aware Di-
versification (SPAD) is a form of intent-aware diversification which
uses subprofiles of the user’s profile as its aspects. The subprofiles
are not defined in terms of item features but in terms of rating simi-
larity between items. Hence, SPADmay be useful in domains where
item features are not readily available or where they suffer from
problems in their quality. Not only that, but SPAD is proving to
be highly competitive against other approaches, usually achieving
highest accuracy out of several intent-aware and non-intent-aware
diversification techniques, and always resulting in an increase in
accuracy and diversity over the baseline. In other words, SPAD is
less prone to trading-off accuracy for diversity.

Since the approach in this paper, CAD, is also based on subpro-
files, we will explain SPAD in more detail and also set up some
notation that we can use in the rest of the paper.

Consider set of items I and, for user u, a subset of those items
Iu ⊆ I . We will refer to Iu as the user’s liked-item-set: simply, it
contains items she has liked. In a recommender that uses unary
implicit feedback, for example, then Iu are the items that the user
has interacted with (liked, clicked on, purchased, etc.), i.e. ones for
which a unary rating, rui , has been recorded: Iu = {i ∈ I |rui , ⊥}.
In the case of a recommender that uses explicit, numeric ratings
(e.g. on 1–5 star or 1–10 star scale), then Iu must be defined in terms

1640



of items the user liked, which will usually involve thresholding the
ratings, e.g. on a 1–5 scale, Iu = {i |rui ≥ 4}.

A user’s subprofiles, Su , are subsets of Iu , each one intended
to capture one of the user’s tastes or interests. Consider one of
these subprofiles, S ∈ Su . Then, the set RS is greedily re-ranked
using the objective function given as Equation 1 with div(i,RL) =
divSPAD(i,RL), where:

divSPAD(i,RL) =
∑
S ∈Su

[p(S |u)p(i |u, S)
∏
j ∈RL

(1 − p(j |u, S))] (2)

Let Su denote all of u’s subprofiles. Then, p(S |u) is estimated as:

p(S |u) =
|S |∑

S ′∈Su |S ′ |
(3)

Finally, p(i |u, S), the probability of choosing i from a set of recom-
mendations RS given subprofile S of user u, is estimated as:

p(i |u, S) =
1(i, S)s(u, i)∑

j ∈RS 1(j, S)s(u, j)
(4)

where:

1(i, S) =

{
1 if i ∈

⋃
j ∈S KNN(j)

0 otherwise
(5)

In Equation 5, KNN(j) is the set of j’s k-nearest-neighbours in I . In
other words, i must be a neighbour of a member of S . Neighbours
are computed using cosine similarity on item rating vectors.

What this does not yet explain is howwe compute the subprofiles,
Su . This is the part of our work that has undergonemost refinement.
Early versions of how this is done are in [11, 12]. In this paper,
we use a simpler approach, which works better [10]. We create a
candidate subprofile for each i ∈ Iu . The candidate subprofile for
i ∈ Iu contains i itself and also j ∈ Iu if j’s nearest-neighbours
contain i , i.e. the candidate subprofile for i , Siu , is given by:

Siu = {j ∈ Iu |i ∈ KNN(j), i , j} ∪ {i} (6)

Again, KNN(j) are the top-k most similar items to j.
The candidate subprofiles are pruned to a final set of subprofiles

by excluding those that are wholly contained in any of the others.
It follows that different subprofiles can be of different lengths;

and the number of subprofiles differs from user to user; but there
can be no more than |Iu | subprofiles because we constructed one
candidate subprofile for every i ∈ Iu .

Compared with other intent-aware diversification frameworks,
which use item features as aspects, SPAD’s set of possible aspects
is much larger. There are 2 |I | different aspects, or 2 |I | − 1 if we
exclude the empty subprofile. A particular user can have non-zero
probabilities for at most 2 |Iu | − 1 aspects (i.e. subprofiles of her
liked-item-set).

SPAD uses item-item similarity to detect the user’s subprofiles.
Correctly defining user tastes and interests is a complex task and
user interactions involve a great deal of uncertainty. In this paper,
we ask whether a user’s community (her nearest-neighbours) might
reveal her tastes and interests. We propose a new intent-aware
diversification framework that is also based on subprofiles, but
detected instead by using user-user similarity. In the next section,
we give details of this new approach.

3 COMMUNITY-AWARE DIVERSITY
In this section, we explain our new approach to diversification in
recommender systems, which we call Community-Aware Diversifi-
cation (CAD). It is a greedy re-ranking approach; it is intent-aware;
like SPAD, it uses subprofiles of the user’s liked-items-set Iu as
aspects; but it identifies subprofiles within Iu by using her nearest-
neighbours, i.e. other users similar to her, not by using the item’s
neighbours.

We define a candidate subprofile for each item i ∈ Iu . Hence,
the number of candidate subprofiles is |Iu |. To simplify, consider
user u and one of her k-nearest-neighbours, v . If item i (which we
know to be a member of u’s liked-item-set) is also a member of
v’s liked-item-set (Iv ), then we take the intersection of u’s and v’s
liked-item-sets, Iu ∩ Iv . Inevitably, this intersection will contain
item i , but it may contain other item’s too.

We compute Iu∩Iv for all ofu’s neighbourswho like i (KNN(u), i ∈
Iv ). So now we have up to k sets, one for eachv ∈ KNN(u) provided
i ∈ Iv . We aggregate these sets to give a candidate subprofile. More
formally, we have that, for user u, the candidate subprofile that
corresponds to item i , Siu , is given by:

Siu = ⋆
v ∈KNN(u),i ∈Iv

Iu ∩ Iv (7)

But this leaves open how to do the aggregation of the intersections,
⋆.

One possibility it to take their intersection (an intersection of
intersection): an item j is in i’s candidate subprofile if it is liked by
all of the users in KNN(u) who liked i:

Siu =
⋂

v ∈KNN(u),i ∈Iv

Iu ∩ Iv (8)

Instead of using intersection, another possibility is to take the union
of the intersections, as follows:

Siu =
⋃

v ∈KNN(u),i ∈Iv

Iu ∩ Iv (9)

in which case an item j is in i’s candidate subprofile if it is liked by
any of the users in KNN(u) who liked i .

With both approaches there are problems. Equation 8 can result
in a lot of singleton subprofiles: i might be the only item that the
neighbours have in common. There is nothingwrongwith singleton
profiles if they contain idiosyncratic items. But, in general, our goal
is to try to group items into subprofiles that capture tastes and
interests, which Equation 8 may fail to do very often.

On the other hand, taking the union, as in Equation 9, results
in large subprofiles, perhaps even some for which Siu = Iu . It may
place into the same subprofile items that represent different tastes
and interests.

In CAD, we use a unified approach, the q-relaxed set intersection,
q ∈ [0, 1]

Siu =

{q }⋂
v ∈KNN(u),i ∈Iv

Iu ∩ Iv (10)

where an item j will be in i’s candidate subprofile if it is liked by a
proportion of at least q of the users in KNN(u) who liked i . When
q = 1.0 Equation 10 is the same as Equation 8, and when q =
1/|{v |v ∈ KNN(u), i ∈ Iv }|, it gives the same results as Equation 9.
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For CAD, q is a hyperparameter, whose value will be set using
a validation set (see Section 4.3). As we will show, it tends to pick
quite high values for q, between 0.7 and 1.0, so it tends to be closer
to Equation 8 than Equation 9.

What we have at this stage are candidate subprofiles, one per i ∈
Iu . As in SPAD, the final step is to prune the candidate subprofiles:
we eliminate any that are subsets of the others. The remaining
subprofiles are treated as aspects in Equation 2.

Before moving on to the experiments, we will mention two other
approaches that did not work and that we discarded. In one of the
rejected approaches, instead of using proportion q in Equation 10,
we tried an integer threshold θ , requiring items to be members
of least θ of the set intersections. We also tested a variation of
CAD in which aspects were not sets of items (subprofiles of Iu );
rather, we used neighbours more directly than is done in Equation
7 — aspects were sets of users, nearest-neighbours who liked i ,
Siu = {v ∈ KNN(u) | i ∈ Iv }. Neither of these two other approaches
worked well enough for us to show their results in this paper.

4 EXPERIMENTS
We have evaluated CAD in offline experiments, which we describe
in this section.

4.1 Datasets
The datasets we use are the MovieLens 1M dataset,1 the LastFM
dataset,2 the LibraryThing dataset [5], and a Facebook dataset [6].
We modify the MovieLens 1M, LastFM and LibraryThing datasets in
the same way as in [9]. For example, the listening event frequencies
in the LastFM dataset are converted into ratings on the scale 1–5
and the dataset is augmented with additional meta-data (namely,
user-generated tags). For LibraryThing, we retrieved a maximum
of the 10 most popular tags for every book and kept the tags that
appeared in the profiles of at least 10 books. The Facebook dataset
contains implicit ratings (‘likes’) unlike the rest of the datasets we
use in our experiments and it is multi-domain since it consists of
user preferences for Facebook pages pertaining to movies, music
and books. For the Facebook dataset, we keep users who have
at least 10 likes and pages that are liked by at least 10 users; for
meta-data, we use categories crawled from DBpedia [6].

Table 1 summarizes the characteristics of the datasets.

4.2 Recommender systems
We compare CAD with SPAD and one other intent-aware diversifi-
cation technique, xQuAD [20], using the implementation which is
available in the RankSys library.3 We have also compared CAD and
SPAD with a number of other intent-aware diversification methods
(RxQuAD [21], SxQuAD & SRxQuAD [19], and c-pLSA [23]) and a
more classical (non-intent-aware) method, MMR [2]. In this paper,
we only show the results for xQuAD since, across all datasets, it
was the most competitive of these other techniques.

All of these approaches to diversification use greedy re-ranking,
therefore they need a baseline recommender, whose recommen-
dation sets are re-ranked. In this paper, we report results for two

1http://grouplens.org/datasets/movielens/
2http://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/lastfm-1K.html
3https://github.com/RankSys

Table 1: Datasets

MovieLens 6040 users 3706 movies ∼1M ratings
18 genres in total; avg. 1.65 per movie
avg. 165.6 (σ = 192.74) movies per user
avg. 95.25 (σ = 105.0) liked movies per user

LastFM 992 users 7280 artists ∼500k ratings
71833 tags in total; avg. 8 per artist
avg. 515.94 (σ = 475.14) artists per user
avg. 195.35 (σ = 194.95) liked artists per user

LibraryThing 7279 users 37232 books ∼750K ratings
4800 tags in total; avg. 9.08 per book
avg. 102.95 (σ = 132.68) books per user
avg. 66.43 (σ = 82.56) liked books per user

Facebook 104178 users 15374 pages ∼4.75M ratings
33,660 categories in total; avg. 10.62 per page
avg. 45.94 (σ = 49.43) pages per user
avg. 45.94 (σ = 49.43) liked pages per user

baseline recommenders: a fast alternative least-squares matrix fac-
torization recommender (MF) [15] and probabilistic Latent Semantic
Analysis (pLSA) [7]. Again we use their RankSys implementations.
Two baselines paired with four approaches to re-ranking (CAD,
SPAD, xQuAD and none at all) gives eight systems to compare on
each dataset.

Both baseline algorithms have hyperparameters. In our cross-
validation methodology (next section), as in [21], we select hyper-
parameter values that maximize precision for top-10 recommenda-
tions. For pLSA and MF, we choose the number of latent factors (d)
from V = {10, 30, 50, . . . , 330, 350} and MF’s confidence level (α )
from {1, 2, . . . , 10}. This resulted in the following values:

• pLSA: d = 50 for MovieLens; d = 30 for LastFM; d = 270 for
LibraryThing; d = 30 for Facebook.

• MF: d = 30,α = 1.0 for MovieLens; d = 30,α = 1.0 for
LastFM; d = 330,α = 1.0 for LibraryThing; d = 50,α = 10.0
for Facebook.

CAD and SPAD also have hyperparameters. SPAD has a hyperpa-
rameter, k (Equation 6), the number of neighbouring items (referred
to below as kIB), whose value we select from V . CAD also has hy-
perparameter k (Equation 7), this time the number of neighbouring
users (referred to below as kUB). For the MovieLens, LastFM and
LibraryThing datasets, we also select its value from V . However,
for the Facebook dataset, we found we needed a greater range of
candidate values and so we tested with values up to 1500. CAD
also has hyperparameter, q (Equation 10), used in the relaxed set
intersection, whose values we select from [0.1, 0.2, . . . , 1.0]. Finally,
Equation 5, which is part of both CAD and SPAD, also has hyperpa-
rameter k (referred to below as kind ) and its value is also selected
from set V .

The values selected for the MovieLens dataset are:
• pLSA: kIB = 10, kind = 50 for SPAD; kUB = 150, kind = 10,
q = 0.7 for CAD.

• MF: kIB = 10, kind = 30 for SPAD; kUB = 170, kind = 10,
q = 0.7 for CAD.

The values selected for the LastFM dataset are:
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• pLSA: kIB = 30, kind = 10 for SPAD; kUB = 130, kind = 10,
q = 0.9 for CAD.

• MF: kIB = 50, kind = 10 for SPAD; kUB = 130, kind = 10,
q = 1.0 for CAD.

The values selected for the LibraryThing dataset are:
• pLSA: kIB = 10, kind = 10 for SPAD; kUB = 150, kind = 10,
q = 1.0 for CAD.

• MF: kIB = 30, kind = 10 for SPAD; kUB = 170, kind = 10,
q = 0.8 for CAD.

The values selected for the Facebook dataset are:
• pLSA: kIB = 10, kind = 10 for SPAD; kUB = 1500, kind = 10,
q = 0.8 for CAD.

• MF: kIB = 10, kind = 10 for SPAD; kUB = 1500, kind = 10,
q = 0.8 for CAD.

4.3 Methodology
In our experiments, we randomly partition the ratings in each
dataset into training, validation and test sets such that 60% of each
user’s ratings are in the training set, 20% of them are in the val-
idation set and 20% are in the test set. Results are averaged over
five runs with different random splits. In experiments, we measure
accuracy using precision and diversity. We measure diversity using
α-nDCG [4], which is a redundancy-aware version of nDCG, except
in Section 5.4, where we also use ILD.

We emphasize that all of the hyperparameter values are found
using the validation set. We select hyperparameter values for each
baseline recommender that optimize precision on the validation
sets [21]. Then, for each user, we generate a recommendation set
RS , where |RS | = 100 using the baseline recommender with its
best hyperparameter values. We re-rank RS to produce ranked
list RL using each of the re-ranking methods with each of their
combinations of hyperparameter values. Then, from each RL, we
select the top-N recommendations, N = 10. Finally, for each re-
ranking method, we select hyperparameter values that give the
best α-nDCG on the validation set.

Now we train the baselines using their selected hyperparameter
values on the union of the training and validation sets and, for
each user, generate a recommendation set RS , where |RS | = 100.
Then, we re-rank each RS to produce ranked lists RL using each of
the re-ranking methods with their selected hyperparameter values.
Then, from each RL, we select the top-N recommendations, N = 10
and measure precision and α-nDCG on the test set.

5 RESULTS
We divide this section into four: first we analyze the subprofiles
that CAD and SPAD find in each dataset; next we give results that
compare CADwith SPAD and xQuAD; then, we show the results for
different values of λ; lastly, we show the trade-off between precision
and diversity.

5.1 Analysis of the subprofiles
In this section we compare the subprofiles detected by CAD and
SPAD on each dataset. Table 2 shows the average number of sub-
profiles per user and the average length of the subprofiles. We
also show the average similarity of the subprofiles with each other,

Table 2: Subprofile statistics

SPAD
avg. 51.09 (σ = 61.5) subprofiles per user
avg. len of subprofiles is 7.78 (σ = 6.25)

Movie avg. sim of subprofiles is 0.0379
Lens

CAD
avg. 60.22 (σ = 76.39) subprofiles per user
avg. len of subprofiles is 34.01 (σ = 25.28)
avg. sim of subprofiles is 0.4007

SPAD
avg. 134.37 (σ = 161.41) subprofiles per user
avg. len of subprofiles is 30.08 (σ = 28.11)

Last avg. sim of subprofiles is 0.1045
FM

CAD
avg. 52.04 (σ = 29.95) subprofiles per user
avg. len of subprofiles is 16.62 (σ = 35.81)
avg. sim of subprofiles is 0.0523

SPAD
avg. 32.49 (σ = 46.71) subprofiles per user
avg. len of subprofiles is 8.8 (σ = 10.72)

Library avg. sim of subprofiles is 0.044
Thing

CAD
avg. 21.55 (σ = 12.41) subprofiles per user
avg. len of subprofiles is 6.1 (σ = 9.85)
avg. sim of subprofiles is 0.059

SPAD
avg. 24.29 (σ = 25.83) subprofiles per user
avg. len of subprofiles is 5.04 (σ = 5.66)

Face avg. sim of subprofiles is 0.0208
book

CAD
avg. 32.59 (σ = 31.23) subprofiles per user
avg. len of subprofiles is 4.85 (σ = 6.63)
avg. sim of subprofiles is 0.101

which, for user u, is an all-pairs average:

spsim(u) =

∑
S ∈Su

∑
S ′∈Su ,S,S ′ jsim(S, S ′)

|Su |(|Su | − 1)
(11)

where here Su is the final set of subprofiles for u. Subprofiles are
just sets of items (movies, books, etc) and so the similarity between
two subprofiles, jsim(S, S ′) that we want here is simply how much
they overlap, for which Jaccard similarity (jsim(S, S ′) = |S∩S ′ |

|S∪S ′ | )
seems appropriate.

Consider, the MovieLens dataset first. On average, SPAD extracts
∼51 subprofiles per user and they consist of ∼8 movies. CAD ex-
tracts more subprofiles (∼60) and those subprofiles has a lot more
movies (∼34) compared with SPAD’s subprofiles; CAD’s subprofiles
are also much more similar to each other.

Next, consider the LastFM dataset. SPAD extracts an average of
∼134 subprofiles, having ∼30 artists, per user. CAD extracts fewer
subprofiles (∼52) with a little over half as many artists (∼17). SPAD’s
subprofiles are more similar to each other than CAD’s.

Then, consider the LibraryThing dataset. There are on average
∼32 subprofiles per user, which have ∼9 books, using SPAD. Using
CAD gives fewer subprofiles (∼22), having fewer books (∼6). SPAD
subprofiles are not very similar to each other, and neither are CAD
subprofiles.

Finally, consider the Facebook dataset. Using CAD results in
more subprofiles (∼33) than SPAD (∼24), and they are more similar
to each other. The average length of the subprofiles are almost the
same (∼5).
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Table 3: Results using MF as the baseline. The best result for
each metric is highlighted in bold for each block. The value
of λ that optimizes α-nDCG for each baseline and re-ranking
strategy is given. All of the results are statistically signifi-
cant with respect to the MF baseline (Wilcoxon signed rank
with p < 0.05). For CAD and SPAD, if improvements over
xQuAD are statistically significant, they are highlighted
with ▲; and if their improvements over each other are sta-
tistically significant, they are marked with △

.
% change

Metrics over baseline
λ Precision α-nDCG Precision α-nDCG

MovieLens
MF 0.2916 0.3197

xQuAD 0.5 0.2739 0.3668 −6.08% 14.72%
SPAD 0.4 0.3005▲△ 0.3351 3.03% 4.81%
CAD 0.3 0.2982▲ 0.3354 2.27% 4.89%

LastFM
MF 0.4654 0.4244

xQuAD 0.3 0.4701 0.4354 1.01% 2.61%
SPAD 0.2 0.4742▲ 0.4296△ 1.9 % 1.24%
CAD 0.3 0.472 0.4275 1.42% 0.75%

LibraryThing
MF 0.1733 0.2412

xQuAD 0.5 0.1866 0.264 7.7 % 9.44%
SPAD 0.4 0.1896▲ 0.2588 9.4 % 7.28%
CAD 0.4 0.1899▲ 0.2603△ 9.59% 7.92%

Facebook
MF 0.1341 0.1613

xQuAD 0.4 0.13 0.1791 −3.0 % 10.99%
SPAD 0.4 0.1428▲ 0.1721 6.53% 6.7 %
CAD 0.4 0.1436▲△ 0.1758△ 7.74% 8.82%

5.2 Results for different algorithms
In this section, we compare CAD with SPAD, xQuAD and the base-
line algorithms (no re-ranking).

The results for the experiments that use MF as the baseline
algorithm are in Table 3. In each block of the table, results for the
MF baseline are presented first, and then results for each re-ranking
method are given. For each method, we report the results using the
value of λ that gives highest α-nDCG on the validation set.

Consider precision first. For all four datasets, CAD and SPAD
have higher precision than xQuAD and the MF baseline. Their ad-
vantage over the MF baseline is statistically significant in all cases,
and their advantage over xQuAD is also statistically significant in
all but the case of LastFM. For the MovieLens and LastFM datasets,
SPAD has highest precision; for the LibraryThing and Facebook
datasets, CAD has the highest precision. However, these differ-
ences are only statistically significant in the case of MovieLens and
Facebook. These results show that, for these four datasets, using
subprofiles as aspects (CAD and SPAD) in intent-aware re-ranking
of MF recommendations gives high precision.

Next, consider the diversity metric, α-nDCG. xQuAD is the best
re-ranking method for all datasets. But note that CAD and SPAD

Table 4: Results using pLSA as the baseline. The best result
for each metric is highlighted in bold for each block. The
value of λ that optimizes α-nDCG for each baseline and re-
ranking strategy is given. All of the results are statistically
significant with respect to the pLSA baseline (Wilcoxon
signed rank with p < 0.05). For CAD and SPAD, if im-
provements over xQuAD are statistically significant, they
are highlighted with▲; and if their improvements over each
other are statistically significant, they are marked with △

.
% change

Metrics over baseline
λ Precision α-nDCG Precision α-nDCG

MovieLens
pLSA 0.2639 0.2842
xQuAD 0.7 0.2456 0.3428 −6.93% 20.61%
SPAD 1.0 0.2803▲△ 0.3171 6.2 % 11.57%
CAD 0.7 0.2731▲ 0.316 3.48% 11.19%

LastFM
pLSA 0.3804 0.3426
xQuAD 0.5 0.41 0.3847 7.78% 12.28%
SPAD 0.6 0.4299▲△ 0.3878▲△ 13.0 % 13.19%
CAD 0.5 0.4124 0.3738 8.39% 9.09%

LibraryThing
pLSA 0.0965 0.1376
xQuAD 0.8 0.1233 0.1816 27.76% 31.94%
SPAD 0.6 0.1407▲ 0.1937▲ 45.8 % 40.75%
CAD 0.7 0.1423▲ 0.1983▲△ 47.36% 44.1 %

Facebook
pLSA 0.1028 0.1217
xQuAD 0.6 0.0996 0.148 −3.19% 21.65%
SPAD 0.7 0.1201▲ 0.1445 16.78% 18.76%
CAD 0.8 0.1209▲△ 0.1501▲△ 17.6 % 23.36%

are at a disadvantage. α-nDCG is a metric that measures diversity
in terms of explicit item features. CAD and SPAD make no use of
item features at all, whereas xQuAD uses them as aspects. Indeed,
α-nDCG is a metric that has some similarities to what is used for
re-ranking in xQuAD. Even so, CAD and SPAD have statistically
significantly higher diversity than the MF baseline for all datasets.
Besides, if we look at the percentage changes, for theMovieLens and
Facebook datasets, xQuAD achieves highest diversity at the expense
of a decrease in precision: it trades-off accuracy for diversity. CAD
and SPAD, on the other hand, always increase both accuracy and
diversity. Compared with each other, CAD has higher diversity than
SPAD for all but the LastFM dataset where SPAD is statistically
higher than CAD.

The results for the experiments that use pLSA as the baseline
algorithm are in Table 4. Comparing Tables 4 and 3, we see that
pLSA has lower precision and α-nDCG than MF on all four datasets,
and in no case does re-ranking pLSA give a higher results than the
corresponding result for MF. Otherwise, the story is very similar.
Here, SPAD has highest precision for the MovieLens and LastFM
datasets, and CAD the second highest. For the LibraryThing and
Facebook datasets, CAD has the highest precision, and SPAD the
second highest. Again, despite making no use of explicit features,
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Figure 1: MovieLens dataset, precision and α-nDCG values
for varying λ. Values for MF are shown by dotted lines.

CAD and SPAD always increase diversity and, in fact, now for the
LastFM dataset SPAD gives the highest α-nDCG and for the Li-
braryThing and Facebook datasets CAD gives the highest α-nDCG.
Only in the MovieLens dataset does xQuAD achieve the highest
diversity, again at the expense of a decrease in accuracy.

5.3 Results for different values of λ
Here, we look at the effect of parameter λ, which controls the
balance between relevance and diversity in Equation 1. The results
we have shown so far use whichever values for λ give highest
α-nDCG. Instead, here we plot precision and α-nDCG on the test
set for different values of λ; see Figures 1, 2, 3 and 4.

We see that the results we discussed in Section 5.2 are fairly
robust over different values for λ. For example, for the MovieLens
dataset (Figure 1), SPAD’s precision is comparable with, or higher
than, CAD’s and xQuAD’s, only becoming worse than the base-
line for very high values of λ. For α-nDCG, SPAD is competitive
with CAD for low values of λ and then outperforms CAD. xQuAD
has high α-nDCG for many values of λ but soon suffers from de-
creases in precision. Results for LastFM (Figure 2) are similar but
less marked. For LibraryThing (Figure 3), SPAD and CAD switch
places and so it is CAD that does best across different values of λ,
and for higher values of λ xQuAD is competitive with CAD since,
for these values, it has higher α-nDCG and competitive precision.
For Facebook (Figure 4), xQuAD is not competitive for any values
of λ: even where its α-nDCG is a little higher, this comes at the
cost of large drops in precision. Across different values of λ, SPAD
and CAD perform quite closely on this dataset, although we know
from Section 5.2 that, at λ = 0.4, CAD outperforms SPAD on both
metrics.

5.4 Results that reveal trade-offs
In this section, we show the trade-off between relevance and di-
versity for the re-ranking methods. Figure 5 plots their precision
against diversity, where diversity is measured by α-nDCG. The
dotted lines show the precision and diversity of the MF basseline,
dividing each subfigure into four quadrants. The ‘sweet spot’ is the
top-right quadrant, where both precision and diversity are higher
than the baseline. We can see that, for all datasets, CAD and SPAD
more often occupy this ‘sweet spot’ because they are less likely to
trade off precision for diversity.
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Figure 2: LastFM dataset, precision and α-nDCG values for
varying λ. Values for MF are shown by dotted lines.
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Figure 3: LibraryThing dataset, precision and α-nDCG values
for varying λ. Values for MF are shown by dotted lines.
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Figure 4: Facebook dataset, precision and α-nDCG values for
varying λ. Values for MF are shown by dotted lines.

Figure 6 shows the same, this time measuring diversity using
ILD, which we mentioned earlier. It is worth showing these re-
sults because ILD is in some sense a ‘purer’ measure of diversity
than α-nDCG, which mixes ranking and diversity. The results are
similar to those in Figure 5, with CAD and SPAD more likely to
increase both precision and diversity. The one exception is the
LastFM dataset, where CAD and SPAD have lower values for ILD.
CAD and SPAD are again at a disadvantage because, unlike xQuAD,
they make no use of item features but ILD, like α-nDCG, measures
diversity with respect to these features.
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Figure 5: For all datasets, precision versus α-nDCG for differ-
ent λ. Values for MF are shown by dotted lines.
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Figure 6: For all datasets, precision versus ILD for different
λ. Values for MF are shown by dotted lines.

6 CONCLUSIONS
In this paper, we have presented a new approach to recommenda-
tion set diversity that we call Community-Aware Diversification
(CAD). It is an intent-aware approach and uses subprofiles of the
items that the user likes as its aspects, as does Subprofile-Aware
Diversification (SPAD). CAD detects subprofiles using a user-user
similarity approach, unlike SPAD, which uses an item-item simi-
larity approach. We compare performance of CAD to SPAD and to
xQuAD [20] on four datasets. We find that, CAD and SPAD pro-
duce recommendations that are always the most accurate. We also
show that CAD and SPAD are less prone to trading-offs accuracy
for diversity. In some cases using CAD subprofiles performs better
than using SPAD subprofiles; in other cases, the reverse is the case.
We conclude that it is meaningful and useful to define subprofiles
indirectly through a user’s community (her nearest neighbours).
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