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Abs t r ac t .  VS-CBR [14] is a simple instance-based learning algorithm 
that adjusts a weighted similarity measure as well as collecting cases. 
This paper presents a 'PAC' analysis of VS-CBR, motivated by the 
PAC learning framework, which demonstrates two main ideas relevant 
to the study of instance-based learners. Firstly, the hypothesis spaces of 
a learner on different target concepts can be compared to predict the 
difficulty of the target concepts for the learner. Secondly, it is helpful to 
consider the 'constituent parts' of an instance-based learner: to explore 
separately how many examples are needed to infer a good similarity 
measure and how many examples are needed for the case base. Applying 
these approaches, we show that VS-CBR learns quickly if most of the 
variables in the representation are irrelevant to the target concept and 
more slowly if there are more relevant variables. The paper relates this 
overall behaviour to the behaviour of the constituent parts of VS-CBR. 

1 I n t r o d u c t i o n  

Instance-based learning (IBL) algorithms may learn by accumulat ing exemplars 
in a case base. However, empirical studies [1] [15] show tha t  an instance-based 
learner tha t  also tunes its similarity measure is generally more efficient than one 
that  does not. More formal studies [8] [6] [7] indicate similar conclusions. For 
example, in [7] we show tha t  an instance-based learner, which learns monomial  
target  concepts (defined in Section 2) using a fixed but 'opt imal '  similarity mea- 
sure, is less efficient than  a learner with a simple rule for adjusting a weighted 
similarity measure. The  ability to alter the similarity measure is therefore an 
important  par t  of IBL. 

This paper  describes the formal analysis of a similarity-learning IBL algo- 
r i thm within the PAC learning framework. Few publications describe analyses 
of this kind, and the most  similar work to our own is tha t  of Satoh and Okamoto 
[11]. These authors s tudy the problem of similarity learning by defining a learn- 
ing problem where the learner must infer a similarity measure from 'qualitative 
distance information' .  In contrast,  this paper  analyses the problem of choosing, 
from positive and negative instances of the target  concept, a case base and a sim- 
ilarity measure tha t  together  approximate  the target  concept. In other words, 
Satoh and Okamoto  s tudy instance-based learning only indirectly, via a model 
tha t  abstracts  the problem of learning weights for the similarity measure,  while 
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we make an actual instance-based learner the object of our study. In particular, 
our paper demonstrates two ideas that we suggest might be generally useful for 
the analysis of specific instance-based learners. 

2 D e f i n i t i o n s  

For the purposes of this paper we assume that examples are represented by a 
number of binary (0 or I) valued features. The example space, or space of possible 
problem descriptions, is therefore the space of N-bit binary vectors, referred to 
as DN and defined DN ~- {0, i} N. 

The paper is concerned with a binary classification task, or the task of learn- 
ing {0, l}-valued functions, or concepts, defined on DN. The set of all such con- 
cepts is called BN; BN = DN -+ {0, I}. In particular, this paper will study 
the behaviour of instance-based learning algorithms on monomial or conjunctive 
target concepts. A monomial concept can be represented in the propositional cal- 
culus by a simple conjunction of literals. The set of monomial concepts is referred 
to as MN. hlrthermore, MN,k is defined as the set of monomials with exactly k 
literals; Ul represents a concept in M/v,1, while ?~lU2~t31t4 represents a concept 
in MN,4. The i-th bit of the representation is said to be relevant to a monomial 
concept t e MN if the literal ui or ui appears in the expression representing t, 
and irrelevant if not. 

Simple IBL algorithms learn by adding cases to a case base CB and by 
adjusting a similarity measure a. A case base CB is a set of exemplars, each of 
which is a pair (d, n)e (DN • {0, 1}). Normally, a case base is compatible with 
some target concept t e B y  such that  for each exemplar (d,n) eDy ,  t(d) = n. 
This is written CB C_ t: 

CB C t ~ (V(d, n) c C B .  t(d) = n) 

The similarity measure a is a total function in DN • DN -'+ [0, 1] which returns a 
real value indicating the degree of similarity between its two arguments. The pair 
(CB, a} is interpreted as the representation of a {0, 1}-valued function defined 
o n  D N  a s  follows: 

1 if 3(dpos, 1) e C B .  V(dneg, 0) e CB" or(d, dpos) > c~(d, dneg) 
h{cB,a)(d) = 0 otherwise 

(1) 
In other words, a point deDN is positively classified by h(cB,a) if and only if 
there is a stored positive exemplar dpos that  is strictly more similar to d according 
to the similarity measure a than any of the stored negative exemplars dn~g. 

Like many other IBL algorithms (e.g. [12] [5] [1]), the learner studied here 
uses a weighted similarity measure; here, this measure is simply a sum of the 
weights of the bits of the representation on which two descriptions agree: 

N 

a~-(dl,d2) -- E~ ~ E w i  x (1 --](dt)i -- (d2)il) (2) 
i=l Wi i-~l 
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If the weight vector u has weight 1 in all elements then a ~  t reats  all dimen- 
sions of the representation equally and is analogous to the Hamming  distance 
between the two descriptions. This special case will be written al l .  

Finally, if 5c  (DN) m is a sequence, or sample, of m descriptions from DN, 
then let xt s tand for the sequence xt = ((xi,t(x~)))~-i where xi is the i- th 
element of 5. In other words, for each element xi from x, xt contains both  the 
element xi and also t(x~), the value of the concept t on tha t  example. 5t is called 
a training sample for t since it provides a partial  definition of t through the labels 
t(xi).  The hypothesis of a learner L on a training sample ~t, writ ten L(St),  is 
the concept chosen from B N by L to approximate  the target  concept t while the 
hypothesis space of L with respect to t, writ ten H L, is the set of hypotheses that  
might be output  by L on some training sample for t: 

H L ~ { h e B y l 3 ~ e ( D y ) * "  L(~t) = h} (3) 

The hypothesis space of a learner L with respect to a set of concepts or concept 
space C C_ BN is similarly writ ten H L and defined H n = Ut~ c HL" 

3 I n s t a n c e - B a s e d  L e a r n i n g  A l g o r i t h m  V S - C B l Z l  

f o r a l l  1 < i < N, ne{0,1} se t  f[i,n] = 1 
set  CB -= @ 
fo r  i = 1 to m do 

i f  n~ = 1 then 
i f  ~ d c D N  " (d, 1) cCB then set  CB = CB U {(d~, 1)} 
for  j = 1 to N de 

set /[j, I -- (d~)3 ] = 0 
else 

set C B  : C S  U {(d,,0)} 
forall 1 < i < N 

if f[i,O] ---- i V f[i, i] ---- I then 
set w, = I 

else 

set  w~ ~ 0 
RETURN VS-CBR(-$) = h (cB ,a~}  

Fig. 1. V S - C B R  Learn ing  A lgo r i t hm for Concep t s  in MN [14, Fig 4]. ~ = 
((d~, nl))~=l is a training sample from (ON X {0, 1}) m. 

This paper  studies V S - C B R ,  an IBL algorithm that  has a simple rule for choos- 
ing weights for the weighted similarity measure a ~  (Figure 1). This algorithm 
learns only monomial  target  concepts and operates in the following fashion: 

- 0 n l y  the first positive example in the training sample is added to the case 
base. All other positive examples are discarded. 

- All negative examples in the training sample are added to the case base. 
- 0n ly  binary weights (0 or 1) are assigned to au 
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- All weights are 1 initially. A weight changes to zero iff two positive examples 
are observed that  disagree on that  bit of the representation. 

Wess and Globig [14] explain the workings of V S - C B R  with reference to 
Mitchell's Version Space algorithm [10]. In contrast, we find a closer analogy 
between the method used by V S - C B R  to calculate the weights for the similarity 
measure and the (non case-based) 'standard learning algorithm for monomials' 
[13] [3]. We call the standard algorithm M for convenience. On the first positive 
example in the training sample, M sets its hypothesis to the monomial expression 
representing the concept whose only positive instance is the positive example. On 
subsequent positive examples, M deduces that  if bit j of the positive example is 
1 then ~j cannot appear in the hypothesis and if bit j is 0 then uj cannot appear. 
This rule correctly identifies whether a bit of the representation is relevant, as 
long as the target concept is a monomial. Literals judged irrelevant can then be 
deleted by the learner. 

V S - C B R  operates in exactly the same way, using the array f to calculate 
which bits of the representation are irrelevant. After processing any sample ~, 
f[i, n] = 1 only if no positive exemple dpos has been processed such that  (dpos)i = 
(1 - n) and therefore all observed positive examples have value n on bit i of the 
representation. V S - C B R  must then convert f to the weight vector ~ to be used 
in the similarity measure. This is straightforward; a bit of the representation is 
irrelevant to the definition of the concept whenever both possible values have 
been seen in positive exemplars and hence f[i, 0] = 0 A f[i, 1] = 0. In this case, 
the corresponding weight wi is set to 0 so that  bit i is ignored by a~; otherwise, 
it is set to 1. 

4 D i r e c t  A n a l y s i s  o f  V S - C B R  

The PAC Learning Framework [3] provides a means of evaluating learning algo- 
rithms and in particular defines a quantity called the sample complexity which 
serves as the measure of efficiency of a learning algorithm: 

De f in i t i on  1. S a m p l e  C o m p l e x i t y  [3]. The sample complexity mL(t,  5, c) of 
a learning algorithm L with respect to a target concept t is the least value of m 
such that ,  for any degree of confidence and accuracy 0 < 5, e < 1, the hypothesis 
inferred by L from a training sample of size m will, with probability greater than 
1 - 5, have an error less than e with respect to the target concept t, using any 
underlying distribution. 

Additionally the sample complexity mL (C, 5, e) of a learner L with respect 
to a concept space C is defined mL (C, 5, ~) = maxt ~ c mE(t, 5, e) and stands for 
the minimum size of sample sufficient for probably (5) approximately (c) correct 
learning of any target concept in C. 

An algorithm with a small sample complexity will therefore require fewer 
examples to choose a hypothesis that  is probably approximately correct than an 
algorithm with a high sample complexity. Key results in the PAC framework [4] 



449 

link the sample complexity of a learner to its hypothesis space. For example, an 
upper bound on sample complexity, in terms of the cardinality of the hypothesis 
space of the learner, is easily proven: 

T h e o r e m  2. [7, P r o p  6.5.11] c.f. [4, T h m  2.2] The sample complexity of 
any consistent learning algorithm L that learns a target concept t ~ B N is bounded 
above by a quantity of the order of (~ log ~ + log lull) 

This result can also be expressed in terms of a concept space C C_ BN, giving 
a bound on mL(C, 5,e) in terms of IHcLI. 

Our approach therefore is to explore the hypothesis space of V S - C B R  to 
make predictions about the relative efficiency of the learner on different target 
concepts. Firstly, Proposition 3 shows that  the discarded positive examples are 
redundant since they are equivalent, from the point of view of the weighted simi- 
larity measure, to the stored, 'prototypical' exemplar [14]. Hence the hypothesis 
space H Vs-CSR is simply the set of concepts with case based representation 
(CB, eric ,  ), where C B  is a case base compatible with t and the similarity mea- 
sure a~c ,  has weights WeB e {0, 1} N such that  a bit of the representation has 
value 0 iff that  bit can be proven to be irrelevant to the target concept from the 
positive exemplars in the case base: 

( w e B ) , =  {10if Sbe {O, 1} . V(d, 1 ) e C B  . (d)i = b 
otherwise (4) 

P r o p o s i t i o n  3. [7~ P r o p n  6.3.2] 1 A concept f is a member of the hypothesis 
space of V S - C B R  with respect to a target concept t e M y  if and only if there 
is a case base C B  C t such that h(cs ,a~c , )  = f ,  where a~c ,  is defined as in 
equation (4): 

Vt e MN " V f  ~ BAr  9 f c H VS-CBR ++ 3CB C_ t "  h(CB,aWCB ) -~ f 

While it is reassuring to know that  the positive exemplars discarded by VS-  
C B R  are redundant, the problem with Proposition 3 is that  the hypothesis is 
represented using different similarity measures at different times. It is the con- 
stantly changing relationship between the case base and the similarity measure 
that  makes the analysis of similarity learning IBL algorithms difficult. Fortu- 
nately, in the case of V S - C B R ,  changes in the similarity measure are unidirec- 
tional; weights can be changed from one to zero but not vice versa. The similarity 
measure therefore converges monotonically toward the ideal as more examples 
are read from the training sample. As a result, it is possible to express the hy- 
pothesis space H V S - C B R  a s  a set of concepts representable by a single similarity 
measure: 

P r o p o s i t i o n  4. [7, P r o p n  6.4.2] The effective hypothesis space of V S - C B R  
w.r.t, any target concept t e M y  is the set of concepts h ( c B , ~ )  where C B  is any 

1 The proof of Proposition 3 and of all the other new results in this paper is ommitted 
but can be found in [7]. 
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case base compatible with t and that in addition has no more than one positive 
exemplar: 

V t ~ M N .  H VS-CBR = {h<cB,~u>ICB c_ t A ~={dpos CDNl(dpos, 1) e C B }  < 1} 

A concept in H VS-CBR can therefore be represented by O'H and by a case base 
containing some subset of the negative instances of the target concept and no 
more than one positive instance. Since the concepts in MN,1 are the most general 
monomial concepts, with the largest number of positive instances and therefore 
the smallest number of negative instances, there will be at least as many con- 
cepts in HVS-CBRMN,N as in HVS-CBRMN,1 . For example, the concepts in H VS-CBRMN,1 are 
those concepts with a case-based representation where the negative exemplars 
are drawn from one half of the example space and the single positive exem- 
plar lies in the opposite half. If, instead, a target concept that  also has that  
positive exemplar as a positive instance is taken from MN,2, then there will be 
an additional quarter of the example space whose descriptions can appear as 
negative exemplars in the representation of hypothesis concepts. In the limit, if 
the target concept is from some space MN,N, then there is only one description 
in DN that  is a positive instance of the target concept, and all other descrip- 
tions can appear as negative exemplars. In addition, for each monomial concept 
t ~ Mg,k, there will be more specific monomial target concepts that  will have all 
the negative instances of t as negative instances and will still be positive on some 
single description. The result below therefore follows immediately as a corollary 
of Proposition 4: 

C o r o l l a r y  5. [7, C o r  6.4.3] The hypothesis space H VS-CBR o f V S - C B R  w.r.t. M N , k  

the concept space MN,k iS a subset of the hypothesis space H VS-CBR w.r.t. MN,k, , 
M N , k '  

for all N > k' > k. 

Vl < k < k ~ < N ~VS-CBR C T-TVS-CBR 
- -  " .t.t M N , k  __ "t~t M N , k l  

This result shows that  the size of the hypothesis space of V S - C B R  on the 
concept space MN,k increases in the value of k. We would therefore expect V S -  
C B R  to learn target concepts in MN,1 most easily, since this is when it has the 
smallest hypothesis space, while target concepts in MN,k are learnt more slowly. 
Simple experiments reported in [7] confirm this. Corollary 5 therefore allows 
predictions to be made about the relative efficiency of V S - C B R  on different 
monomial target concepts and also gives some kind of explanation of why target 
concepts defined by the smallest monomial expressions are learnt more easily 
than target  concepts represented by larger monomial expressions. 

5 Const i tuent  Analysis of V S - C B R  

In Section 4, we showed that ,  in this instance, the size of the hypothesis space 
H~ correlates with the efficiency of the learner on target  concepts t ~ C. The 
link between hypothesis space and efficiency is only a heuristic one, however. 
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In particular, Theorem 2 is only an upper bound rather than an expression for 
the sample complexity itself. We therefore attempted to validate the results of 
the previous section by adopting a different line of analysis, and considering V S -  
C B R  as two separate processes, or constituents, one of which tunes the similarity 
measure, while the other is responsible for populating the case-base. 

1. We noted in our description of V S - C B R  that the learner assigns a zero 
weight to a bit of the representation iff that bit is judged to be irrelevant by 
the monomial learner M; V S - C B R  will choose the correct similarity measure 
on precisely those training samples where M correctly identifies the target 
concept. The convergence rate of the process by which V S - C B R  chooses 
can therefore be determined by considering the sample complexity of M. 

2. On the other hand, the convergence rate of the process by which V S - C B R  
populates its case base can be studied through an IBL algorithm that does 
not have to learn a measure of similarity, but is given, a priori, a similarity 
measure whose weights are 1 iff that bit of the representation is relevant to 
the target concept. This new algorithm therefore starts learning with all the 
information needed for the similarity measure, and any subsequent learning 
is due to the exemplars added to the case base. 

These two views are developed in the following subsections. 

5.1 Learn ing  the  Similar i ty  Measure  for V S - C B R  

We noted previously that V S - C B R  chooses the correct similarity measure on 
precisely those training samples where M, the 'standard learning algorithm' for 
monomial target concepts [13], exactly identifies the target concept. M starts 
with a specific hypothesis corresponding to the first positive exemplar read from 
the training sample, and then generalises the hypothesis by deleting literals until 
the monomial expression that exactly represents the target concept is reached. 
For each target concept t c MN,  each of the monomials more specific than t might 
have been chosen as an 'intermediate' hypothesis by M before t is correctly 
identified: 

P ropos i t i on  6. [7, P r o p n  6.5.13] The hypothesis space o/ M ,  the standard 
learning algorithm for monomial concepts, w.r.t, a k-literal monomial target con- 
cept t c Mg,k ,  contains all concepts in M N  which specialise the target concept t 
along with the concept fo that has value 0 on all descriptions: 

H M = { h c M y l h  E t} U {fo} 

where h E_ t is read 'h specialises t '  ( Vde DN . h(d) = 1 -~ t(d) = 1) and fo is 
the concept such that V d c D N  . fo(d) =- O. 

[7, Propn 6.5.13] also argues that IHMI = 3 N - k  + 1, which agrees with what 
is already known about M. Langley and Iba claim in passing that the number 
of examples that M needs in the average case increases with the number of 
irrelevant attributes [9]. Proposition 6 and Theorem 2, correspondingly, show 
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that  the sample complexity of M (a worst-case measure of efficiency) can increase 
no more than linearly in N - k. The more irrelevant bits, the more examples will 
be needed by M, and therefore by V S - C B R  before it chooses a good similarity 
measure. This contrasts with the overall picture of V S - C B R  developed in Section 
4, where target concepts with the most irrelevant variables appeared to be the 
easiest to learn. The reason for this difference must lie in the requirements of 
V S - C B R  for examples to populate the case base. 

5.2 P o p u l a t i n g  t h e  case  base  for  V S - C B R  

s e t  C B  = 0 
for i = I to m do 

set C B  = C B  U { ( d l , n , ) }  
RETURN CB2(~) = h<cB,~, 

n m Fig. 2. CB2 Learning Algor i thm for Concepts  in MN. ~ = ((d~, ~))~=1 is a 
training sample from (DN x {0, 1}) m and weight vector Et has value 1 iff that bit of 
the representation is relevant to t. 

Figure 2 shows the instance-based learning algorithm CB2. CB2 collects all the 
examples from the training sample into the case base CB and outputs the hy- 
pothesis represented by (CB, am~ ), where am, is the instance of a~  that  is ideally 
weighted according to whether or not a bit of the representation is relevant to 
the target concept t ((wt), = 1 iff bit i is relevant to t). 

Whereas CB2 uses the ideal measure a~, (as if this was known in advance), 
V S - C B R  infers a similarity measure a~cB from the available exemplars that  
approximates ~ and will eventually converge to the 'ideal' weighting if sufficient 
positive exemplars are available. In this way, CB2 can be seen as a limiting 
approximation of V S - C B R  that  illustrates the maximum contribution that  can 
be made by the best possible choice of similarity measure from the class defined 
by binary weight vectors E e {0, 1} N. 

The fact that  CB2 starts off with the correctly weighted similarity measure 
a~, means that  it has only to populate the 2 k classes of descriptions which 
are treated as equivalent by am, [14]. The sample complexity of CB2 therefore 
can be established to be a function of k and not of N. For example, by using a 
straightforward simplification of the analysis of Aha et al [2], the following upper 
bound can be established: 

P r o p o s i t i o n  7. [7, C o r  {}.5.9] The sample complexity of CB2 with respect to 
a target concept represented by a k-literal monomial expression, t e MN,k~ is no 

2 k 2 k more than --j log e - r ,  independent of the value o/ N.  

2 k 2 k 
mCB2 (t, ~, C) < -~- 1oge -~- 

Having established that  the sample complexity of CB2 must be independent 
of N, the following result, similar to Corollary 5, can also be proven which 
suggests that  the sample complexity of CB2 increases in k: 
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P r o p o s i t i o n  8. [7, P r o p n  6.5.4] The effective hypothesis space HCS2k of CB2 
w.r.t, the concept space MN,k i8 a subset of the hypothesis space HCB2MN,~, w.r.t. 
MN,k, for any N > k' > k. 

Vl < k < k' < N  9 H cB2 C H CB2 
- -  M N , k  - -  M N , k l  

In contrast to M (Section 5.1), CB2 has a sample complexity apparently 
increasing in the number of relevant bits of the representation and independent 
of the overall size N of the representation. (As with V S - C B R  in Section 4, these 
statements can also be demonstrated in the average-case by simple experiment 
[7].) The order of the sample complexity of CB2 is not known, unlike that  of 
M which we could state to be O(N - k). To obtain such a result, we would 
need to characterise and count the number of different hypotheses in H CB2 in 
order to apply Theorem 2. We have made partial progress towards this; [7] gives 
some necessary conditions on the representation of concepts in the propositional 
calculus in order for them to be members of H CB2. Counting the number of 
such concepts for small values of k [7, Table 6.2] makes it clear that,  although 
log IHCB21 increases more than linearly in k, the upper bound indicated by Theo- 
rem 2 would be greatly less than the exponential bound indicated by Proposition 
8. We can say no more than this, however, since we have no general expression 
for IHtCB2 I. 

6 C o n c l u s i o n s  
Section 4 showed that  it is possible to re-express the hypothesis space of VS-  
CBR,  an IBL algorithm that  tunes its similarity measure as part  of learning, as 
a set of concepts representable w.r.t, a single similarity measure. This charac- 
terisation is sufficient to show that  the hypothesis space of V S - C B R  is smallest 
w.r.t, the concept space MN,1, and becomes larger for the concept space MN,k 
as k increases. From this we infer, using standard results in the PAC learning 
framework, an upper bound on the sample complexity of V S - C B R  that  also 
increases in k. 

Section 5 then described V S - C B R  as two processes that  operate in tandem, 
each independently manipulating an element of the representation (CB, aN). 
This 'consti tuent '  analysis showed that  increasing the number of relevant vari- 
ables (the parameter  k) makes it harder for V S - C B R  to get sufficient exemplars 
to cover the example space but  easier to infer a good similarity measure. How- 
ever, decreasing k makes the similarity measure harder to infer but reduces the 
sample complexity of building a suitable case base. Since a target concept MNA 
is more easily learnt by V S - C B R  than a target  concept in MN,N, it seems that  
populating the case base is the harder task. In an experiment where the accu- 
racy of V S - C B R  is measured on target concepts in MN,k for decreasing values 
of k, the extra  cost of inferring a similarity measure that  ignores more irrelevant 
features must be compensated for by a greater reduction in the sample com- 
plexity of building the case base. This suggests that  the sample complexity of 
CB2 increases more than linearly in k and, conversely, agrees with the results of 
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[11], which also suggest that the problem of finding suitable weights may have a 
relatively low sample complexity. 

Our work aims to develop ways of evaluating and comparing IBL algorithms. 
We believe that theoretical analyses are a valuable complement to empirical 
comparisons such as [15] because they can define the limits of the performance of 
a learner, and characterise when one instance-based learner outperforms another. 
However, more work is needed to refine the theoretical tools that are available so 
that directly usable results can be derived for realistic learning algorithms. The 
work we describe here has explored two different ideas which seem promising for 
investigating instance-based learners: 

1. We have shown that it is useful to define the hypothesis space of a learning 
algorithm (w.r.t. different target concepts) in order to predict the relative 
efficiency of the learner on those target concepts. 

2. We have also shown that it can be useful to think of IBL algorithms in terms 
of their constituent parts. 

In this paper we have considered only the straightforward world of conjunc- 
tive (monomial) target concepts. Further work must explore whether these prin- 
ciples are also useful for more general instance-based learners. 
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