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Abstract

In order to learn more about the behaviour of case-based reasoners as learning systems, we form-
alise a simple case-based learner as a PAC learning algorithm, using the case-based representation
(CB,c). We first consider a ‘naive’ case-based learning algorithm C'B1(og) which learns by col-
lecting all available cases into the case-base and which calculates similarity by counting the number
of features on which two problem descriptions agree. We present results concerning the consistency
of this learning algorithm and give some partial results regarding its sample complexity. We are
able to characterise CB1(cm) as a ‘weak but general’ learning algorithm. We then consider how
the sample complexity of case-based learning can be reduced for specific classes of target concept
by the application of inductive bias, or prior knowledge of the class of target concepts. Following
recent work demonstrating how case-based learning can be improved by choosing a similarity meas-
ure appropriate to the concept being learnt, we define a second case-based learning ‘algorithm’ C'B2
which learns using the best possible similarity measure that might be inferred for the chosen target
concept. While C B2 is not an executable learning strategy (since the chosen similarity measure is
defined in terms of a priori knowledge of the actual target concept) it allows us to assess in the
limit the maximum possible contribution of this approach to case-based learning. Also, in addition
to illustrating the role of inductive bias, the definition of C'B2 simplifies the general problem of
establishing which functions might be represented in the form (C'B,c). Reasoning about the case-
based representation in this special case has therefore been a little more straight-forward than in the
general case of CB1(on), allowing more substantial results regarding representable functions and
sample complexity to be presented for C'B2. In assessing these results, we are forced to conclude
that case-based learning is not the best approach to learning the chosen concept space (the space
of monomial functions). We discuss, however, how our study has demonstrated, in the context of
case-based learning, the operation of concepts well known in machine learning such as inductive bias
and the trade-off between computational complexity and sample complexity.
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1 Introduction

This report introduces a simple model that allows the analysis of the learning behaviour of a case-based
reasoning system. In essence, we apply recent formalisations of the knowledge content of a case memory
system from a functional point of view [Jan92] [WG94] within the PAC learning model [Hau90] [Nat91]
[AB92] [KV94], due originally to Valiant [Val84b]. The functional viewpoint sees the case-base as a
representation of a mapping between input and output values. Adopting the PAC learning framework,
we contrast this with the ‘true’ relation that holds in the application domain between input and output
values, which we call the ‘domain relation’, and consider a worst case, probabilistic analysis that indicates
when this mapping, with some level of confidence, will be a good approximation to the ‘true’ relation. In
contrast with the inductive inference approach of Jantke [Jan92] and the informal approach of Wess and
Globig [WG94], this ‘probably approximate correct’ approach has allowed us in some cases to set bounds
on the number of exemplars needed to guarantee a good approximation to the domain relation. This
has been our main means of comparing the different forms of case-based learning in the work reported
below.

Section 2 below defines the notation to be used in this report and introduces the basic concepts of
the PAC learning framework. Section 3 then describes our simple model of a case memory system which
provides us with the ‘case-based representation’ central to this work. In sections 4 and 5, we can then
consider two kinds of ‘case-based learning’. In the former section (§4), we consider the simplest form of
learning with the case-based representation, where ‘learning’ consists only of adding new cases to the
case-base of the system. This is contrasted in §5 with a more elaborate case-based learning strategy,
which in addition to building a case-base is able to manipulate the similarity measure by which the
similarity between problem instances is calculated. The insights yielded by these studies into the nature
of learning in a case memory system are given in the conclusions of §6.

2 Definitions

In this report, we deal only with the task of ‘classification’; the systems being considered take a problem
instance from a space of possible descriptions and output a ‘yes’ or ‘no’ answer indicating whether or
not the description is a positive instance of the target concept. That is, the domain relation being
modelled is a {0, 1}-valued function defined on the space of possible descriptions; this is the situation
that is usually assumed in the PAC learning model. The ‘space of possible descriptions’ will be referred
to as the erample space and denoted in the general case by X. The example space for the current work
is the space of N-bit binary vectors, referred to as Dy = {0,1}". (d); will be used to stand for the i-th
bit of a vector de Dy.

The set of {0, 1}-valued total functions defined over this domain will be denoted By = (Dy — {0,1}).
In addition the set of monomial functions will specifically be referred to below. A monomial expression
U is a combination of no more than N literals chosen without replacement from the set {us,...,un};
additionally each chosen literal may be negated before being added to U. The classification function for
the expression interprets U as a conjunction of the (possibly negated) literals:

1 if Vi (uieU = ((d); = D)) A (@eU — ((d); = 0))

N _
hy (d) = { 0 otherwise (1)

The function A (d) is therefore a {0, 1}-valued function on Dy whose value is decided by a conjunction
of the bits of d. The space of such functions will be referred to as My, and My is defined as the set of
monomials with exactly k literals (#U = k). Uy will stand for the monomial expression corresponding
to vector de Dy i.e. the unique monomial expression of size N s.t. hy,(d) =1+ d=d'.

In general, boolean functions will be represented by a disjunctive normal form such as ujug + 173
or u; + usuqus with the obvious interpretation.



Finally, we let f¥ and f}' stand respectively for the ‘all-0’ and ‘all-1’ functions on Dy:

Vde Dy - fo' (d)

0 (2)
VdeDy - fN(d) =1

2.1 PAC Learning

For some function ¢ from the space X — {0,1}, the sets C™ and C~ can be defined where CT =

{z: X |c(r) =1} and C~ = {z : X | ¢(xr) = 0}. The binary function imposes a classification on its
domain, and in this situation the word ‘concept’ can refer to either the set of positive instances Ct or
its characteristic function c¢. This characteristic function ¢ will be the ‘domain relation’, or in this case
the target concept to be approximated by the learning process. In addition, the PAC framework assumes
that the situation in which the learning system is deployed dictates some set of concepts which it is
proposed to learn. This ‘set of possible concepts’ is referred to as the concept space C.

A second, possibly distinct set of concepts is referred to as the hypothesis space H. This is the space
of functions that the learner can choose from in attempting to find an approximation to the target
concept. The hypothesis space is determined by the representation used by the system to express its
approximations. In many other presentations of PAC learning results, such as the results of [ BEHW89)],
the concept space is often conflated with the hypothesis space; it is assumed that H = C. However,
one of the important insights in this work is that the concept space and hypothesis space will often be
different for a case-based learner; the distinction will be maintained carefully in what follows.

PAC-Learning applies to the situation of ‘supervised learning from examples’. Here, the information
used by the learner to derive its approximation to the target concept is a training sample of negative
and positive instances of the target concept. A sample of length m is a member of X™, i.e. a series of
m examples. A {raining sample of length m is on the other hand an element of (X x {0,1})™; each of
the m elements of the training sample is an example from X labelled with a 0 or a 1, designating the
example as a negative or positive instance of the target concept respectively.

The framework requires that there is some fixed probability distribution y defined over the example
space X, and that each element of the samples and training samples defined above is drawn independently
from X according to this probability distribution. (This means that, in general, samples will contain
repeated examples.) The distribution is fixed in that the same distribution by which training examples
are drawn from X is also used to measure the error in an hypothesis.

Definition 2.1 Error of an hypothesis [AB92, p.21]. Given a target concept teC, and an hypo-
thesis he H, where C and H are possibly distinct sets of functions, with all functions defined over the
same domain X, the error of h with respect to t, denoted er,(h,t), is the probability that an example x
drawn from X according to probability distribution p will be misclassified.

eru(h,t) = p{we X|h(z) # t(2)}

Sufficient terms have now been defined to formalise the requirement for a learning algorithm to be
probably approximately correct.

Definition 2.2 PAC-Learning [AB92, p.22]. A learning algorithm L is a probably approximately
correct learning algorithm for a concept space C if, given two constants § and € s.t.

0<de<l,
then there is a positive integer mqo which is a function of § and € only, such that for

e all target concepts teC, and

e all probability distributions defined on X,



then for any training sample s of size at least mg, with probability > 1 —4 the error er,, in the hypothesis
inferred from that sample will be < €.

In other words, with confidence at least 1 — 9, the accuracy of the inferred hypothesis is at least 1 —e.
Thus the learner is allowed to fail, producing a bad hypothesis, for some small set of ‘uninformative’
samples occurring with probability < ¢, and additionally for all other samples a bounded amount of
error (< ¢) is allowed in the hypothesis. These bounds d&e will however be reduced to arbitrarily small
amounts by a PAC-learning algorithm if a sufficiently large training sample is presented. The size of
training sample required to guarantee that a hypothesis is PAC within given values of §&e is referred to
as the sample complexity.

Definition 2.3 Sample Complexity [AB92, p.41]. The sample complexity my of a learning
algorithm L with respect to a concept space C is the least value of m such that, for all concepts teC,
and for all probability distributions u, the hypothesis inferred by L from a training sample of size m will,
with probability > 1 — §, have an error < € with respect to the target concept t.

The sample complexity m will often be hard to determine exactly, so we often refer instead to an
upper bound mg on the sample complexity, as in Definition 2.2. That is, mg denotes some value for the
size of a training sample proven theoretically to guarantee a probably approximately correct hypothesis
(for all target concepts and all probability distributions). mgy may however be larger than the actual
sample complexity due to approximations made in the proof.

3 Case-Based Representation of Classification Functions

Following the work of Jantke [Jan92], a case memory system is modelled as the pair (C'B, o) where CB
is the case-base, or set of stored exemplars, assumed here to be free from observational error, and o is
a similarity measure defined for the space Dy. Using the terminology of Dearden’s model [Dea95], the
case-base is modelled as a set of pairs of ‘descriptions’ and ‘reports’. As indicated above, a description is
an N-bit vector from the space Dy. A report is a single bit denoting the classification of that exemplar,
making C'B an object of type:

CB: P (Dy x{0,1})

The similarity measure o is a function over pairs of descriptions returning a normalised real value
indicating the degree of similarity between the two instances:

g (DN XDN) — [0,1]

The pair (CB, o) is treated as the representation of a function from By, according to the following
interpretation related to the ‘standard semantics’ for a case-based classifier of Jantke and Lange [JL93].
The function represented by (CB, o) is defined as:

1 if F(dpes,1): CB -Y(dpeg,0): CB-0(d,dpos) > 0(d, dneg)

N _
hcp,q(d) = { 0 otherwise (4)

Informally, a point d from Dy is positively classified by hé\é B,o) if and only if there is a stored positive
exemplar d,,s which is strictly more similar to d according to the chosen similarity measure o than any
of the stored negative exemplars dpeq. In relation to other semantics discussed by Jantke [Jan92], this
interpretation resolves ‘ties’ between equally similar near neighbours by imposing a preference ordering
on the ‘report’ part of retrieved cases. Negative exemplars are preferred over positive ones in inferring
the classification of a new problem instance, i.e. if the set of exemplars which are most similar to d
contains both positive and negative exemplars, d will be classified negatively.

In the current paper, as specific examples of a ‘similarity measure’, we will use either the unweighted
feature count oy or the weighted feature count oz. These are defined below.



Definition 3.1 ‘Unweighted Feature Count’ Similarity Measure oy The unweighted feature
count og is defined as the proportion of bits on which two members of Dy agree:

N

(o) = = 371 = ld): = (@) 9

=1

This measure of similarity is denoted oy because of its relation to the Hamming distance between
the two vectors, specifically dy(dy,ds) = N - (1 — og(dy,ds)).

Definition 3.2 ‘Weighted Feature Sum’ Similarity Measure oy. The weighted feature sum oy is
defined as the proportion of bits on which two members of Dy agree, where each bit of the representation
has a relative importance defined by the weight vector w:

di,d2) = w; x (1 —|(dq ds); 6
ow( Z Z |(d1)i — (d2)s]) (6)

i=1 Wi j=1
for some ‘weight vector’ we[0,1]V.
These straightforward functions for calculating similarity share a ‘weak’ version of transitivity in that
if descriptions d; and ds are similar according to either measure, and d; and dsz are similar according to

that measure, then d; and d3 will also be similar. This is expressed in the results below as a modified
form of the triangle inequality.

Proposition 3.1 ‘Transitivity’ of 0. For any weight vector We [0, 1], then given similarities meas-
ured by o, if di is similar to ds and ds is similar to ds, then di must be similar to ds. Specifically:

Ywe [0, l]m '\V/d17d2,d3 EDN . O’U(dl,d3) Z O'E(d17d2) + O’U(dg,d3) —

Proof: Let A, be the sum of the weights of the bits on which two descriptions d,,d, e Dy disagree;
Agp = Efil w; X |((da)i — (dp);)|- Clearly the triangle inequality can be applied here; A; 3 will be upper
bound in terms of A; » and As 3 since in the worst case Ay 3 = Aj 2 + Ay 3. Hence:

A3 <Ajs+Ass (7)
But also we have og(d,, dy) = S_ga'b, where S = Zf\;l w;. Substituting above in equation (7), this
gives the stated result. O

Corollary 3.2 ‘Transitivity’ of oy. If dy is similar to dy and ds is similar to d3, then di must be
similar to ds. Specifically:

le,d2,d3 EDN 'O'H(dl,d3) Z O'H(dl,dz) +0’H(d2,d3) — ].

Proof: oy is clearly an instance of oz according to a suitable choice of weight vector w. Hence result
follows immediately from Proposition 3.1. O

Two complementary views are presented here which provide a little leverage in the analysis of the
functions represented by a case memory system. On the one hand, we consider a point in the example
space to be ‘labelled’” with the exemplars which are most similar to that point according to the specified
similarity measure. The converse notion is to consider the subset of the example space which is labelled
with a particular exemplar to be the ‘region of influence’ of that exemplar.

Definition 3.3 Label of a point in the example space. A point in the example space is labelled by
the descriptions of the exemplars in the case-base which are most similar to it. The label is also referred
to as the set of nearest neighbours NN(d,CB,c).

Vde Dy - NN(d,CB,o) ={d e Dy|(Ine{0,1} - (d',n) e CB) AY(d",n")eCB - o(d,d") > o(d,d")}



Proposition 3.3 An instance de Dy is classified positively by the function hcp . iff the label of the
point d, NN(d,CB, o), is non-empty and contains only the descriptions of positive exemplars.

VdeDy - hiep.oy(d) = 1 ¢ (NN(d,CB,0) # {} AVd' e NN(d,CB, ) - (d,1) e CB)

Proof: Assuming RHS, hcp ) (d) = 1 follows immediately by equation (4). Conversely, Definition
3.3 indicates that all labels will be non-empty if the case-base is non-empty. Hence an empty label
indicates an empty case-base and equation (4) returns a zero on d. Alternatively, if there is a description
d e NN(d,CB,o) s.t. (d',0)eCB, then also hicp,s is 0 on d. O

Definition 3.4 Region of Influence of an exemplar. The region of influence of an exemplar
(d,n) e CB is the subset of the example space whose examples are labelled with d.

RI(d,CB,0) ={ze X|V(d',n")eCB -o(x,d) > o(z,d)}

The notion of ‘region of influence’ allows the function represented by a case-based classifier {(C'B, o)
to be partially explicated. Equation (4) implies immediately:

hiepoyd) =1de | (1 D(dpos; dneg.0) (8)
(dpos,1) € CB (dneg,0) e CB

where D(d;,ds, o) is the subset of the example space X which is strictly more similar to the exemplar
dy than to d» according to the measure o. The expression re-expresses the claim that a point d will
be positively classified if and only if there is some positive exemplar in the case-base to which d is
strictly more similar than any negative exemplar, but shows that the ‘regions of influence’ of the positive
exemplars combine independently to make the overall concept shape. This can also be expressed in terms
of the boolean form of a function with a case-based representation. That is, in analogy to equation (8),
the case-based representation (C'B,o) for a function fe By can be ‘translated’ to a boolean form as
follows:

h(CB,o’) = \/ /\ Ao'(dp057 dneg) (9)

(dpos,1) € CB (dneg,0) e CB

where A, (dy,ds) is the canonical sum containing a minterm for each point in the example space which
is strictly more similar to d; than to ds according to the similarity measure o.

Example 3.4 Interpretation of Case-Based Representation

Consider the function defined on the space Dy by the case-base CB = {(1111,1), (1001, 1), (0001, 0),
(1100,0)} and the similarity measure oz (Definition 3.1). In the special case of oy, then the sum
A, (dy,ds) is equivalent to the boolean function which is true if a description d agrees with d; on a
strict majority of the bits on which d; and d» differ.

U; \U,
Aoy (o dneg) = \AU € (Us,. \ U, ) #U = {M

5 J +1} (10)

where Uy, ,, and Uy, ., are the monomial expressions corresponding to the descriptions dp,s and dpey as
above. Hence the boolean representation of f = h(cp o) is:

neg

h(CB,Uy)
= A(1111,0001).A(1111,1100) + A(1001,0001).A(1001, 1100)
= (urug + ujus + usug).ugtg + Uy . TUsliy

= upU3zlUg + UsUsUg + uiUuy O



It is clear that, in contrast with other symbolic AI approaches to machine learning, (CB, o) is an
implicit representation of the system’s state [WG94, p.79]. That is, it is difficult to understand by
inspection of the pair precisely what function is currently represented. A little experimentation with
the representation shows that large changes to the boolean form of a function can result from small
changes to the representing case-base and vice-versa. This makes it difficult, amongst other things, to
establish whether there is a case-base containing exemplars from some target concept or concept class
which gives a case-based representation of some particular function. However, Proposition 3.5 below
states one fact that is easily established and has proved a useful constraint in reasoning whether specific
functions may or may not have a case-based representation. Given a point in the example space which is
positively classified by a function with a case-based representation, then by equation (4) there must be
some positive exemplars labelling the example which are responsible for the positive classification, and
the result below shows that all examples in the subset of the example space lying on the set of shortest
paths between the positive instance and the exemplars influencing it must also be classified positively.

Proposition 3.5 Consider a case-base CB and a point de Dy which is a positive instance of h(cB o) -
Let df be any positive exemplar in C B which is mazximally similar to d w.r.t. og:

V(d',n)eCB - oy(d,d) > op(d,d)

Then, for any such positive exemplar, any instance which lies on a shortest path through the example
space between d and di", i.e. any point d* e Dy s.t.

VI<i <N (d"); # (df)i = (d)i # (df )
is also a positive instance of h(cB oy -

h(cBouy(d") =1

Proof: Given h(cp o4)(d) = 1, then the set of nearest neighbours of d must be non-empty and contain
only positive exemplars (Proposition 3.3). These exemplars will be equally similar to each other, will
be maximally similar to d w.r.t. all other exemplars in the case-base and are strictly more similar to d
than any negative exemplar. For any such positive exemplar d; :

Y(d=,0)eCB - oy (d,df) > og(d,d") (11)

For a proof by contradiction, assume that for one such positive exemplar there is a description d*
satisfying (d*); # (d); — (d); # (df )i, s-t. there is some negative exemplar (d; ,0) e CB which is at
least as similar to d* as dj is:

3(d;,0)eCB oy (d*,dy) > oy (d*,df) (12)
Assumed above, we have:
VI<i<N-(d); # (df)i = (d)i # (d): (13)

Hence, all bits on which d and di" agree, d* and df also agree on; clearly d and d* must also agree in
this case. Thus the number of bits on which d and dj” agree is equal to the number of bits on which
d and d* agree, minus the number of bits on which d and d* agree, but on which d* and d] disagree.
Since in addition, equation (13) requires (d*); # (di"); — (d); = (d*), then all bits on which d* and d;
disagree are also agreed on by d and d*. Thus

N.og(d,df) = N.og(d,d*) — (N — N.oyg(d*,d))
and o (d,d) = o (d,d*) + o(d*,d) — 1. Thus from equation (12):

op(d*,d7) > on(d,df) — o (d,d*) + 1 (14)



In turn, from corollary 3.2 we have o (d,d; ) > op(d,d*)+on(d*,d; ) — 1 Hence equation (14) gives
or(d,dy) —og(d,d*) +1> oy (d,d}) —og(d,d*) + 1, and thus from equation (12) we have derived

3df e NN(d,CB,0o)-3(d; ,0)eCB -oy(d,d;) > on(d,df) (15)
which contradicts equation (11). Hence
Y(d~,0)eCB-oy(d*,d”) < ox(d*,d) (16)

and we conclude h(cp »,)(d*) = 1 for any d* lying on a direct path between d and d where d; is any
positive exemplar labelling d. O

4 Case-Based Learning with Fixed Similarity Measures

Aha et al [AKA9L, p.40] suggest that a particular case-based system of the kind discussed here is
defined by the specification of a similarity function, classification function (c.f. our ‘semantics’) and
concept description update function. Rather than formalise the updating of the system’s hypothesis as
a function, we follow the conventions of computational learning theory and define ‘case-based learning
algorithms’ that describe how the system’s approximation to the target concept is updated as new
elements of the training sample are read. Wess and Globig emphasise that within a model of this kind,
the knowledge content of the system rests in both the set of exemplars and in the chosen measure of
similarity. Therefore “there are three possibilities to improve a case-based system:

e store new cases in the case base CB
e change the measure of similarity [o]
e change CB and [0]” [WG94, p.79]

Many ‘case-based learning’ algorithms have been defined illustrating these options; IB2 [AKA91],
VS-CBR [WG94] and PEBLS [CS93] [YJL94] show a number of options for adjusting the represented
hypothesis. The current section will study the situation where concepts are learnt using a single fixed
similarity measure, and the hypothesis is updated by alterations to the case-base alone. Specifically,
having defined a simple case-based learning algorithm, we will firstly (§4.1) consider how the choice of
similarity measure affects the consistency of CB1(c). That is, we will give results characterising those
functions o which ensure that an algorithm C'B1(c) has the basic property of being able to reproduce
the classifications of those examples seen in the training sample. In the following sections we will then
report some simple empirical observations of C'B1 (§4.2) and our results in trying to account for these
observations within PAC learning theory (§4.3). We must first, therefore, define the following family of
learning algorithms.

Definition 4.1 CB1(o) Learning Algorithm for Case-Based Classifiers
set CB =1

for i = 1 to m do
set CB=CBU{(d;,b;)}
set CB1(0)(3) = hcp,o)

where 3 = ((d;, b;))™, is a training sample from (D x {0,1})™.

We refer to this as a ‘family’ of learning algorithms since there are clearly different instantiations of
definition 4.1 which will output different hypotheses on the same training sample according to the (a
priori) choice of similarity measure o, such as the measures of similarity given in Definitions 3.1 and 3.2
above.



The algorithms designated C'B1(o) learn by adding each and every member of the training sample
5 (a series of m pre-classified examples (d;,b;)) to the case-base. In contrast with algorithms such as
IB2 [AKA91] and other ‘instance filtering methods’, which are deliberately more economical about the
exemplars they retain [Cam92] [Zha92] [Bib95], this has the result that for a given target concept ¢, all
possible case-bases CB C t are reachable by the learning algorithm. This is expressed in the following
result, which also introduces the notation H, g BY9) 4 stand for the set of possible output hypotheses or
hypothesis space of C Bl(c) with respect to some concept space C.

Proposition 4.1 A function f is a member of the hypothesis space of C B1(co) with respect to the concept
space C' C By if and only if there is some target concept ce C for which there is a case base CB C ¢ s.t.
hicBoy = f-

VO C By -VfeBy-feHSP) & 3ceC-3CBC e hiopa = f

Proof: a) Only if. Assume that a function f is output as a hypothesis from the algorithm on 3§, which
is a training sample for the target concept ¢. By Definition 4.1, f is a function h(cp,,,), where CB
contains exactly those examples presented in the training sample. Since we have assumed that there is
no observational error or noise of any kind, then for any (d;,b;) in the sample, ¢{(d;) = b;, and hence
CB C t. Hence RHS. b) If. Assume that a function f has a case-based representation (C'B, o), where
CB C c for some ceC. Clearly, any enumeration of the exemplars in CB can be presented to CB1(0)
as a training sample on which the algorithm outputs the hypothesis f. Hence LHS. O

As a corollary of Proposition 4.1:

HEPYD = hypy (17)
teC

where hyp¢o = {hB,-|CB C t}

These definitions show how the hypothesis space of CB1(0) depends on the choice of both the
similarity measure o and the concept space C. This gives the analysis of case-based learning algorithms
a distinctive feel in contrast to the way that in most learning algorithms a fixed hypothesis space is
determined by the ‘hard-wired’ representation used by the learner. Note also that for smaller concept
spaces, it will not be uncommon that a case base C'B which is extensible to some target concept ¢ will
be interpreted by equation (4) as a function from outside of the concept space. This is illustrated in the
following example which makes use of the unweighted feature count o .

Example 4.2 Hypothesis Space of C'Bl(oy) with respect to the concept space My ;

The concept space My 1 (see §2) is the space of functions which partition Dy into two equal halves
according to the value of a single bit of the representation, i.e. the set of monomial functions which can
be represented by a single literal.

Consider the function hg, ) from My ;, and training sample 3 = ((1111,1), (0000, 0)) for A, ;.
Note that the first exemplar is a positive instance since the first bit is 1, while the second exemplar
is a negative instance. CB1(oy) will convert § to the case-base CB' = {(1111,1),(0000,0)}, and
infer h(cp s,y as an approximation to hg,,;. Following Example 3.4, hicp s,y = Ay (1111,0000) =
U UU3Z + U USUg + UTU3UL + USUIUY . Hence h(CB’,aH> ¢MN71. O

The nature of this relationship will be illustrated further below, and, in particular, the impact that

it has on the sample complezity of C B1(o) as a learning algorithm. First, however, it is necessary to
consider the property of consistency of a case-based learning algorithm.

10



4.1 Consistency of CBl1(0)

Definition 4.2 Consistency of a learning algorithm. A learning algorithm L is consistent with
respect to a class of functions C iff for all training samples s for any target concept t e C, the hypothesis
h = L(s) inferred from that sample correctly classifies all examples present in the training sample.

V1<i<m-h(z;)=1t(z;)
where 3 = ((x1,t(x1)), ..., (Tn, t(x,))).

Consistency is one of the most basic properties of a learning algorithm, being the property that the
algorithm will produce a hypothesis which will classify correctly at least the examples in its training
sample. It is not always desirable for an algorithm to be consistent. This is certainly the case in
noisy domains; the noise tolerant learner IB3 [AKA91] attempts to disagree with the training sample on
precisely those instances which are suspected to be noisy, and Turney [Tur93] gives a formalisation of the
sense in which a consistent hypothesis which always agrees with the training sample may be sub-optimal
in the presence of noise. The current work assumes however that the domain is free from noise, and
therefore can make use of results applying specifically to the class of consistent learners. It is clear
that this class will have certain regularities of behaviour which will facilitate their analysis, and there
are indeed a number of standard results bounding the sample complexity (Definition 2.3) of learning
algorithms which hold in general for consistent learning algorithms.

The main result of this section, Theorem 4.3, gives necessary and sufficient conditions over ¢ to
make C'B1(0) a consistent learning algorithm. This will be a valuable tool in making use of the sample
complexity results for consistent learning algorithms. Results elsewhere [JL93, Lemma 3] [Tur93, Lemma
7] formalise the intuition that a ‘reasonable’ similarity measure [Tur93], which recognises that an object
is more similar to itself than any other object, will be sufficient for consistency. This property is here
called ‘definiteness’ after Day and Faith [DF86, p.183].

Definition 4.3 Definiteness of a Similarity Measure. A similarity measure o is definite iff the
comparison of two distinct objects yields a score strictly less than the score given to the comparison of
an object to itself.

Vd,d': Dy-d#d — o(d,d) < o(d,d) (18)

This property ensures a consistent hypothesis since any exemplar in the case base will be judged
strictly most similar to itself, and therefore those exemplars at least will be classified correctly by
equation (4). Definiteness is not however a necessary condition for consistency. The exemplars in the
case base will still be classified correctly as long as the most similar object to a positive exemplar is
any positive exemplar and the most similar object to a negative exemplar is any negative one. In other
words, two distinct objects may be assigned maximal similarity only if they are classified the same by all
relevant classification functions f. This is recognised informally as a necessary condition by Wess and
Globig [WG94, p.86]. We express it within our framework in our definition of predictivity and prove it
a necessary and sufficient condition over o to make C'B1(0) a consistent learning algorithm.

Definition 4.4 Predictivity of a Similarity Measure with respect to a concept space C. A
similarity measure is predictive of a concept space C iff, for any concept ceC':

1. When d is a positive instance of ¢, the comparison of d and d' yields a score at least as large as
the comparison of d to itself only if d’ is also a positive instance.

VeeC -Vd,d' e Dy - o(d,d) > o(d,d) = c(d) =1—¢c(d) =1 (19)

2. When d is a negative instance of ¢, the comparison of d and d' yields a score strictly greater than
the comparison of d to itself only if d’ is also a negative instance.

VeeC-Vd,d' e Dy -o(d,d) > o(d,d) — c(d) =0 —c(d') =0 (20)

11



Note how this relates to equation (4) in that the property of definiteness is relaxed precisely where
no misclassification will occur under our chosen classification function (4). The asymmetry in equations
(19) and (20) reflects the preference given to negative exemplars in the classification function. Hence we
emphasise that choosing a different semantics in (4) would entail a slightly different form of the following
theorem.

Theorem 4.3 Consistency of CBl(o). For any concept space C C By, CB1(0) is a consistent
learning algorithm for C if and only if the chosen similarity measure o is predictive of C'.

Proof: Let CB1(o) infer a hypothesis from some training sample 5 = {((d;, b;)) for a target concept
c. According to the definition of CB1(c), the case-base will contain exactly those labelled examples
presented in the training sample; in the absence of observational error we can assume (z,n)eCB —
c(x) = n, for ne{0,1}. a) Sufficiency: Assume o is predictive of the concept space C'. Taking positive
and negative exemplars in the case base separately, consider first d; such that b; = 1. For any negative
exemplar (dney,0)eCB, we have ¢(d,.,) = 0 and hence by equation (19) Vde Dx - V(dneg,0)eCB -
0(d,dpey) < 0(d,d) Ve(d) = 0. Since ¢(d;) = 1, we conclude Y(dyey,0) e CB - 0(d;, dpey) < 0(d;, d;), and
thus hcp,s)(d;) = 1 by equation (4). By a similar argument, for some d; such that b; = 0 we derive
from equation (20), V(dpos, 1) e CB - o(d;, dpos) < 0(d;, d;), and hence h(cp - (d;) = 0 by equation (4).
Thus for any example d; in an arbitrary training sample, h(cp ) (d;) = b;, making CB1(c) a consistent
learning algorithm. b) Necessity. It will be shown that for any similarity measure ¢’ which violates
either of equations (19) & (20), there is a target concept ¢’ from the specified concept space for which a
training sample can be constructed which will be mis-classified by CB1(c). The consistency of CB1(o)
would therefore require a similarity measure satisfying both equations. If equation (19) does not hold,
then there must be two descriptors d; and ds and a target concept ¢’ such that:

J’(dl,dg) ZUI(dl,dl)/\Cl(dl):]./\C’(dg) =0 (21)

Thus ((dy,1), (dz,0)) will be a training sample for ¢’. Given the case base C'B constructed by CB1(c")
from this sample, note that hcp,. (di) = 0 since equation (21) indicates that the negative exemplar do
will be at least as similar to di as d; is to itself. Hence h(cp, ) disagrees with the training sample. In a
similar way, if it assumed that equation (20) is relaxed, then there is a training sample ((dy,0), (d2, 1))
resulting in a hypothesis such that h(cp ) (di) = 1. Thus CB1(0) will be a consistent learning algorithm
for a concept space C' if and only if o is predictive of C. O

The close relationship between Definition 4.3 (definiteness) and Definition 4.4 (predictivity) means
that the following additional result can be easily established:

Corollary 4.4 CB1(0) is a consistent learning algorithm for the space By of all total functions on Dy
if and only if o is a definite similarity measure.

Proof: a) Sufficiency. Definition 4.3 entails both (19) and (20). Hence result by Theorem 4.3. b)
Necessity. Assume C'B1(0) is a consistent learning algorithm for By. Hence, by Theorem 4.3:

Vd,d e Dy -o(d,d) > o(d,d) > VfeBy-f(d) =1 f(d) =1 (22)

Assume also two distinct exemplars d; and d». By contains every possible dichotomy of Dy, and so
Af e By - f(dy) = 1A f(dy) = 0. Equation 22 gives o(d;y,ds) < o(dy,dy), hence we conclude that o must
be a definite similarity measure (Definition 4.3). O

Having established the precise conditions under which C'B1(0) is a consistent learner, the following
result follows trivially.

Corollary 4.5 A similarity measure o which is predictive of a concept space C is sufficient to ensure
that CB1(0o) is a PAC learning algorithm for C.

12



Proof: Any learning algorithm which is consistent with respect to some concept space and which learns
using a finite hypothesis space is a PAC-learning algorithm for that concept space [AB92, p.41]. Hence
result follows from Theorem 4.3 since the number of distinct binary functions that can be defined on
Dy is 22" indicating that the hypothesis space of CB1(0) must be finite. O

The PAC-Learnability results given for case-based classifiers in [AKA91] and [AA91] hold for concepts
defined on real valued attributes. As a result of dealing with an uncountable example space, Albert and
Aha have to modify the PAC learning framework by introducing constraints on the probability distribu-
tion on the example space before PAC-learnability can be proven. The finite example spaces considered
in the current paper mean however that any consistent learning algorithm (and some inconsistent ones)
will satisfy the ‘classical’ definition of PAC-learnability (Definition 2.2) without additional constraints.

PAC learnability is an important basic result because it establishes that, given enough samples, the
learning algorithm will eventually converge to arbitrarily good approximations to the target concept. In
addition, two other results are presented as corollaries to the property of consistency:

Corollary 4.6 Given a similarity measure o which is predictive of a concept space C, then for any
target concept ce C there is a case-base CB s.t. hicp,,) = c.

Proof: For some o and C s.t. o is predictive of C, take any ce C' and any training sample 5 for ¢ which
contains an exemplar for every point in the example space Dy . Since Theorem 4.3 guarantees that the
output of CB1(c) will be consistent with 5, clearly the function h(cp »y output by CB1(c) on 5 will be
exactly c¢. O

Corollary 4.6 is of significance in establishing the universality of the case-based representation; it
makes it clear that any total function fe By has at least one case-based representation. The same line
of reasoning establishes the following result, which makes an initial contribution to our understanding
of the effective hypothesis space of a case-based learning algorithm with respect to the choice of concept
space.

Corollary 4.7 A similarity measure o which is predictive of a concept space C will ensure that C is
contained in HgBl(U), the hypothesis space of C B1(c) with respect to that concept space C.

VC C By - Predictivec (o) — C C HgBl(a)

4.2 Empirical Investigation of C'B1(0)

Having established sufficient conditions under which we know that the basic case-based learning al-
gorithm C'B1(c) will eventually converge to a good approximation of the target concept, we now wish
to consider what can be said about how quickly the algorithm converges to its target concept. We wish
to compare the ease with which CB1(o) learns functions from this general class of boolean functions
By with its performance over more restricted classes of ‘easier’ concepts in order to explore the factors
which make a concept ‘easy’ or ‘difficult’ to learn. ‘Ease of learning’ is formalised by considering the size
of the training sample needed to reach certain levels of confidence and accuracy for CB1(o) (the sample
complexity - Definition 2.3). Empirical results will be presented which will motivate further discussion,
and illustrate the learning capabilities of CB1(0).

Experimental software has been implemented to measure the learning curve for CB1(c) on training
samples of increasing size. The probability distribution on the example space, here and in all empirical
work described in this paper, is uniform. Additionally, in this section all empirical measurements are
with respect to the specific learning algorithm C'B1(oy) instantiated with the ‘unweighted feature count’
similarity measure oy defined above (Definition 3.1) unless otherwise stated.

The experimental method used is as follows. A function is chosen randomly from the concept space,
and a training sample of a fixed maximum size is generated for that concept. Each member of the training

13



1 T T T T T T
Concept space =B6 ——
0.8 - R
0.6 | i
>
o
®
=]
Q
Q
<
04 R
0.2 R
0 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Size of Training Sample

Figure 1: Average Learning Curve For All Binary Functions

sample in turn is presented to the case-base as a test instance, the correctness of the classification noted
and then the same instance is added to the case memory as specified by CB1(cy). (This corresponds to
the interleaved testing/learning algorithm IB1 described by Aha et al [AKA91, p.42].) This is repeated for
a large number of different training concepts and the proportion of correctly classified training instances
is calculated for each value of M (the number of instances taken so far from the training sample).

Figure 1 illustrates the learning curve produced by this method for learning arbitrary functions from
Bg, averaging the learning behaviour over 500 different training samples. The graph shows how the
average accuracy of the hypothesis increases from roughly half for an empty case-base (M = 0) to
~ 80% for training samples of size 60. Additionally, Figure 2 shows a measurement of the size of the
case-base (the number of distinct exemplars in the training sample) against the sample size for the same
experiments. This illustrates the comment made above that the number of repetitions in the training
sample will become large as the size of the training sample increases. For example, it appears that for
a training sample of size 60, on average < 40 distinct exemplars will have been added to the case-base.

The above results suggest that there are ‘hard’ domain functions in By that are not suited to
representation by a case-based classifier. Figures 1 and 2 indicate that, to reach even 80 % accuracy
and confidence, on average over half the possible examples have to be represented in the case-base. This
would not seem to be an economic use of case-based reasoning.

In order to explore what might make a concept space ‘easier’ for CB1(oy) to learn, the above results
for By were compared to those for a highly restricted set of binary functions. The concept space for
the following experiments was therefore restricted to the set My of monomial functions defined in §2.
The experimental method described above was reproduced to estimate the average-case accuracy of the
case-based classifier for 500 randomly chosen instances of My for N = 6. Figure 3 graphs these results,
showing the improved accuracy of the system compared to the previous results for Bg. The generally
very high accuracy is due to the relatively small proportion of positive instances of a monomial function
in the general case. Note, however, how slowly the classification accuracy improves as extra exemplars
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are added to the case-base.

Finally, the learning behaviour of CB1(c) over the even more restricted concept spaces My i was
measured for the range of k, 1 < k < N. We wish to study this case from the point of view of inductive
bias, since Langley & Iba’s meticulous average case analysis of a ‘nearest neighbour algorithm for learning
conjunctive concepts’ [LI93] corresponds exactly to the case of learning My, by CB1(of).

The previous experiments were repeated for 250 instances of My for values of k£ between 1 & 3,
and for N = 6. Results from these experiments are shown in Figure 4. Note particularly how functions
from Mg, are learnt more slowly than functions from Mjg 2, which are learnt more slowly than functions
from Mg 3.

In summary, the learning behaviour of CB1(op) is observed to improve as the concept space for the
algorithm is reduced from Bg (Figure 1) to the much more constrained space Mg (Figure 3). Taking a
partition of Mg according to the number of ‘relevant bits’ defining the target concept, the space Mgy
becomes apparently ‘harder’ to learn as k decreases from 3 to 1 (Figure 4). Comparing the learning
curves for Mg and Mg 1, the hypotheses produced by CB1(oy) on training samples for targets in Ms 1
have apparently higher error than the average for concepts in Mg over the range observed. This suggests
that Mg, contains some of the ‘harder’ functions in Ms.

4.3 Inductive Bias in C'B1(0)

Having observed empirically some different aspects of the learning behaviour of the algorithm CB1(og),
we now consider to what extent these results might have been predicted analytically. Definition 2.3,
the sample complezity of a learning algorithm, gives a worst case size of training sample needed for the
algorithm to achieve an accurate hypothesis with some degree of confidence. The following equation,
known as the Blumer Bound [BEHWS87, Lemma 2.1] [Hau88, Lemma 2.2], gives one upper bound for
the sample complexity of any consistent learning algorithm using a finite hypothesis space, in terms of
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the cardinality of that hypothesis space:

1.1 loglH
mo(é,e)gO(—log5+ og | |> (23)
€ €

Alternatively, an upper bound on sample complexity may be expressed in terms of the VC dimension
of the hypothesis space in place of the term log|H]|.

Definition 4.5 Behaviours of S: 15 (S) [AB92, p.73] The set of behaviours of S realised by a function
class H, denoted 11y (S), is the set of subsets S’ C S s.t. there is some function h e H whose set of positive
instances intersects with S to give S'.

Oy (S)={S"CS|3heH VseS h(s) =1+ seS'}

Definition 4.6 Growth function Iz (m) [AB92, p.73]. The value of the growth function Iz (m) for
a sample size m with respect to some space of functions H C (X — {0,1}) is the mazimum number of
behaviours which can be induced on a sample of size m from the set X™ by functions from the space H.

g (m) = max{|Mg (S)] - |S] = m}

Definition 4.7 Shattering [AB92, p.74]. A sample of size m is shattered by a space of functions H if
and only if there is a function in H giving each possible classification of the sample i.e. Ily(m) = 2™.

Definition 4.8 VC Dimension [AB92, p.7}]. The VC Dimension of a space of functions H is the
mazximum value of m such that some sample of size m is shattered by H.

dve(H) = max{m|lly(m) = 2™}

As an alternative to the ‘Blumer Bound’, the following result also applying to any consistent learning
algorithm, gives a bound on sample complexity in terms of this ‘VC dimension’ [ BEHW89, Thm 2.1(ii)(a)]
[Hau88, Thm 4.4]. Note that in general, dyvc(H) <log, |H| [Nat91, Lemma 2.1] and that dyc(H) and
log |H| will often be quantities of the same order. Blumer et al do however note exceptions to this
correlation [BEHWS9, p. 938].

1 dVC (H) 1 ) (24)

1
mo(d,e) < O <—10g— + ——log -
€ ) €

€

Sample Complexity for By

Equations (23) and (24) are given in terms of the cardinality of the hypothesis space (23) and its VC
dimension (24). Characterising the hypothesis space of a machine learning algorithm is most easily
done when the representation directly encodes the anticipated concept space, i.e. when we consider the
concept space to be precisely those functions which might be represented as hypotheses. In contrast, we
consider C'B1 as an example of a learner using a general representation ((C'B, o)) capable of representing
any boolean function, but which is trained on a target concept from some restricted concept space so
that only some subset of those representable functions are output as hypotheses. Clearly, we have not
yet been able to give any characterisation of the effective hypothesis space of C B1(oy) with respect the
concept spaces considered in §4.2; and so in general are not yet able to apply the bounds of equations
(23) and (24) to these cases.

The one case where equation (23) can be applied is in the learning of By by C'B1(c) in the case of a
definite similarity measure o. Since CB1(c) will be a consistent learning algorithm, all 22" functions of
By will be included in the hypothesis space (Corollary 4.7), and (since equation (4) interprets only as
a total function) there are no functions in the hypothesis space that are not in By. Hence the concept
space and the hypothesis space are equal and equation (23) is directly applicable.
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h ) 10

N
6 ~ 230 ~460
8 ~ 900 ~ 1800
10 ~ 3560 ~ 7200

Table 1: Values of mg = h x (2" -log, 2 + log, h)

Proposition 4.8 Cardinality of By. [AB92, p.6] The set of functions By has cardinality 22"

Proof: The functions of By are defined on the domain Dy which has cardinality 2% Hence result since
each bit may be mapped to 0 or 1 independently of all other mappings. O

Table 1 evaluates equation (23) for values of N = 6,8 & 10, and values of h = 5 & 10 where we take 6 =
e and define h = 1 = % so that the upper bound of equation (23) reduces to mo = h(2" -log, 2 +log, h).
The table shows how the value of mg increases with the size of hypothesis space and the required levels
of confidence and accuracy. A sample size of about 230 is required to guarantee the learning of a function
from Bg with 80% accuracy and confidence (h = 5), while about 7200 training examples are needed to
reach even 90% accuracy and confidence (h = 10) for a function from the larger space Big. These numbers
are clearly large compared to the number of distinct instances which could be stored in the case-base.
(The maximum size of the case-base constructed by CB1(c) is |[Dy| = 2V.) It is noted that the sample
size required by the Blumer bound is so high compared to the number of distinct instances because the
PAC framework assumes that all members of the random sample are sampled independently, meaning
that for a small, discrete space such as Dg, the number of repetitions will become large. Additionally, the
sample complexity is a worst-case quantity, in that it refers to the size of training sample needed before
the probability that the examples presented are pathologically unrepresentative of the target concept is
acceptably small (within the confidence bound ¢).

In giving upper bounds on sample complexity, equations (23) and (24) show that the size of training
sample that can be processed before a consistent learning algorithm necessarily outputs a good hypothesis
with high probability will increase with the cardinality and VC dimension of the hypothesis space of the
learner. For the moment, it is assumed that the converse also holds, and that as the hypothesis space
increases, the sample complexity of the learning algorithm also must increase. Equations (23) and (24)
are taken as support for the intuition that, in general, the larger the hypothesis space, the more training
examples the learner must see in order to discriminate between the available hypotheses, and choose a
hypothesis that is accurate with high probability [Hau90, p.1103].

It is important to note that while arguments of this kind will be assumed in what follows, such
a conclusion strictly depends on the specific properties of the learning algorithm using the hypothesis
space. Also, in relating values for the sample complexity of a learning algorithm to the empirically
derived learning curves for the average case described in previous sections, it is assumed that the ‘worst
case’ quantity of sample complexity correlates with and is a useful predictor for the average case learning
curve of a learning algorithm. While the results presented below agree in broad terms with these two
assumptions, it is necessary to bear in mind that they remain assumptions and must be replaced by
more careful analysis as progress is made.

Sample Complexity for Learning Monomial Functions te My

Bearing in mind these caveats, the improved results of Figure 3 (learning Ms) compared with Figure 1
(learning Bg) are taken for the moment as an indication that for a restricted concept space such as My,
only a fraction of the functions in By may be output as hypotheses. The smaller concept space My is
learnt much more efficiently (with respect to sample size) than the space of all functions By . In general,
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ko2t ( v > Moy 4
0 1 1 1
1 2 6 12
2 4 15 60
38 20 160
4 16 15 240
532 6 192
6 64 1 e

Table 2: Values of |My ;| = 2% -NCy, for N =6
however, it cannot be assumed that the size |H| of the hypothesis space of C B1(o) with respect to some
concept space C' necessarily varies with |C|. Consider the following results.
Proposition 4.9 Cardinality of My. [AB92, p.12] The set of functions My has cardinality 3" .

Proof: Follows since, under some function from My, each bit of an N-vector from Dy may either be
determined to be 1, determined to be 0 or undetermined. [

Proposition 4.10 Cardinality of My . The set of functions My x, has cardinality 2% - ( ]]Z >
|MN,Ic| :2k X < ]Z )

2N x2(N—-1)x...x2(N —k+1)

’ k!
since each literal in the monomial expression U may be either positive or negative, giving a choice of 2NV
possible literals on the first choice, 2(IN — 1) on the second choice, etc. The divisor allows for the many

Proof: We argue

different permutations of the same set of literals. Hence |My | = 2% - < i\f ) a

Table 2 lists values of [My | for N = 6 and values of k from 0 to 6. It is clear that |Mg 1] < |Ms 2| <
|Mg,3]. A naive assumption that |C| is going to correlate with |H| would then predict that Mg, will be
learnt the most easily and Mg 3 will be learnt the most slowly. Figure 4 clearly contradicts this, showing
as it does that CB1l(oy) has the poorest learning behaviour for Mg and the strongest for Mg 3. We

must therefore consider more carefully what can be said of Hg BI(U), the hypothesis space of CB1 with
respect to some given concept space C.

The observations of Figure 4 can be explained informally by considering that for a monomial target
concept t e My i, there are 2V ~* descriptions in Dy which are positive instances of ¢. In the discussions
of section 3, it was seen that the positive instances of a represented function are defined by the union of
the ‘regions of influence’ of the positive exemplars in the case-base. (Consider for example equations (4)
and (8)). Therefore, as the number of positive instances of the target concept increases, then so does the
number of case-base representable functions. For case-bases derived from training samples in My ; for
example, equation (4) quantifies over 2V ~1 possible positive exemplars, while for targets in My y, the
representable functions are those corresponding to the region of influence of a single positive exemplar.
It might be expected then that the hypothesis space of CB1(o ) with respect to the concept space My
will contain a greater variety of functions as k is decreased. Example 4.11 shows that this is indeed the
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case in that the effective hypothesis space H ﬁfi(”) contains functions which cannot be represented by

case-bases extensible to target concepts in Hf/[i(”) (Hﬁfi(”) z Hf/[i(”)). However, the converse

also holds. As k increases and the number of positive instances of a monomial target concept decreases,
configurations of negative exemplars become possible which are also necessary to the representation of
particular functions. Example 4.12 illustrates this with a function in H f/[fi(”) which has no case-based
representation with respect to targets in M, ;. The arguments in these examples depend on the idea
of the ‘potentially relevant bits’ of a case-base defined in Definition 4.9. Informally, the elements of
[l are the elements of the representation on which all positive exemplars in CB’ agree. Therefore,
any monomial representation U s.t. CB’ C hy must be a subset of IIgg:. Note that where CB C hy
for some hir € My i, then necessarily |[IIcg| > k since all positive exemplars must agree on the & bits
constrained by U.

Definition 4.9 Potentially relevant bits with respect to a case-base C'B The potentially relevant
bits of a representation with respect to a case-base C'B are the bits on which the positive exemplars
(dpos, 1) e CB are either all positive or all negative. We let llcp stand for the monomial expression
defining the potentially relevant bits with respect to CB, i.e. Ilcpg is the expression representing the
most specific monomial function which has value 1 on all positive exemplars.

Oep = ﬂ Ud,,.
(dpos,1) eCB

Example 4.11 Consider the case-base C B = {(1111, 1), (1000, 1), (0001, 0), (0011, 0), (0101, 0), (0110, 0),
(0100,0), (0010,0)}, and the function h(cp, o) represented by that case-base. Then:

1. The function hc,c,) has boolean representation ui.ua.uz.us4 + w1 .U2.U3.Us.-

2. The function hicp,o,) is a member of the hypothesis space of CB1(og) with respect to the set of

monomials My ;.

hicB,omy € Hyo ) (25)

3. but hicp,s,) is not a member of the hypothesis space of C B1(og) with respect to My ».
hieB.amy (HGE ™ (26)

Proof: 1) The boolean representation of f = hcp s, is (see p. 7):

A, (1111,0001).A,,, (1111,0011).A,,, (1111,0101).A,,, (1111,0110).A,,, (1111,0100).A,, (1111,0010)
+ Ay, (1000,0001).A,, (1000, 0011).A,,, (1000,0101).A,,, (1000,0110).A,,, (1000, 0100).A,,, (1000, 0010)

where, as in Example 3.4,

Up \U.
A (dpos, dneg) = \J{U C (U, \ Ua,., U = {M

1
e R
Hence:

h(CB,o'H>
= (upus + ugus + ususg).(uruz).(uyus).(urug).(urus + wiug + usy).(uus + wiug + uoty)
+ (u1ﬂ4).(u1ﬂ3 + uiug + ﬂ3ﬂ4).(u1ﬂ2 + uiug + E2ﬂ4).(ulﬂ2 + ujus + ﬂ2ﬂ3).(u1ﬂ2).(ulﬂg)
= (urususug).(uus + uiug + usug).(urus + uiug + ustg). (U1 us + w1 + ustg)
+(U1E2ﬂ3ﬂ4).(ulﬂ3 + ’U/1E4 + E3ﬂ4)(u1ﬂ2 + ’U/1E4 + E2ﬂ4).(’ulﬂ2 + U/lﬂg + ﬂzﬂ3).

= (U1U2U3U4) + (Ulﬂgﬂgﬂzl)
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2) Consider the function hy,,} € My 1. Now:

hgury (1111)
h{ur} (1000)
h{uyy (0001)
h {1 (0011)
(0101)
(0110)
(0100) =
(

h{uy1(0101
hfuy1 (0110
h{uy1 (0100
h{u;1(0010) =

I
oo o = o=

Hence (d,n) e CB — hy,,y(d) = n, and hicp o) eHﬁfj“’H)

3) Need to show
Vte M4’2 - VC’B’ Q t- h(CB’,o'H> ;é UL U2UIUL + U U2UI U4

Assume the negation, that there is some case-base C'B extensible to a function in My 2 s.t. hcp ) =
u1u2u3Us + urU2UzUs. Thus the point 1111 is a positive instance of h(cp s, ), and this positive classific-
ation is due to a positive exemplar df close to 1111 i.e. there is some (df, 1)eCB s.t.

Y(d=,0)eCB - op(1111,d}) > oy (1111,d7) (28)

Assume d] # 1111. Take the least value z s.t. (d]), = 0, and consider the instance d* defined as
follows:

d) = 1 i#x
d). = 0
Consider some bit i where (d]); = 1; this cannot be the z-th bit and hence (d*); = 1. Hence d;" agrees
with 1111 only if d* agrees with df, and by contrapositive:
VI<i<N-(d); # (df )i — (1111); # (df )i (29)

Hence by proposition 3.5, h(¢p o) (d*) = 1. But for no value of x will d* be a positive instance of
U1 U2U3U4 + U1 U2U3U4, and so it must be concluded df = 1111. By a similar argument there must be a
second positive exemplar (dy,1) e CB s.t. di = 1000. Hence we have:

(1111,1)eCB (30)
(1000,1)eCB (31)
Thus Hep C {u1}. But since C'B is extensible to some target concept t € My o, all positive exemplars

in C'B must agree on at least two bits of the representation; [Ilcpg| > 2. Hence by contradiction it is
inferred there is no such CB. O

Example 4.12 Consider the case-base CB = {(1111,1), (1100, 1), (1000, 0), (0100,0)}, and the function
h(cB,oy) represented by that case-base. Then:

1. The function hcp ) has boolean representation ui.us + uz.u4.

2. The function hicp,q,) is a member of the hypothesis space of C B1(ow) with respect to the set of

monomials My .

hicB.o) € Hyps (o) (32)
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3. but hicp,sp) is not a member of the hypothesis space of C B1(og) with respect to My ;.

C o
hieB o ¢HYHH (33)

Proof: 1) The boolean representation of f = hcp o) is:

A, (1111,1000).A,,(1111,0100) + A, (1100, 1000).A, (1100, 0100)
= (uous + usug + usty)(urus + ugug + ustg) + (ug)(ur)
= (U1U2U3 + UL U2U3 U4 + U2U3U4 + UL UUZU4 + UL U2U4 + U2U3U4 + UTUIU4 + UL USU4 + U3U4) + U U2
= ULU2U4 + UTU2U3 F+ U3U4 + UTUS

= ULU2 + U3U4

2) Consider the function hfy, u,} € My 2. Now:

Plugupy(1111) =1

Pfuy u,3(1100) =1

hfuy ;1 (1000) =0

P fuy uz3(0100) =0
CBI(O'H)

Hence (d,n) e CB = hiu, u,}(d) =n, and hicp oy € Hyy,

3) Need to show
Vt€M4’1 VCB’ g t- h(CB’,cfg} ;é ULU2 + U3U4

Assume the negation, that there is some case-base C'B extensible to a function in My 1 s.t. hicB op) =
urus + uszug. For ease of notation, define the monomial expressions Uy = {uy,u2} and Us = {us, us}.
Hence:

Vde Dy - (I(dpos, 1) e CB-V(dney,0) e CB-0r(d, dpos) > 0r(d,dney)) < (hy, (d) =1V hy,(d) = 1) (34)
Since o is a definite similarity measure, (d,n) e CB — h(¢B o) (d) = n and:
V(dpos, 1) € CB - hyy, (dpos) = 1V hy, (dpos) =1 (35)

Additionally, consider the point 1100 which is a positive instance of h(cp,,,). Clearly the exemplars
maximally similar to 1100 are positive ones; let any such exemplar be denoted d; . Assume that d
disagrees with 1100 on the first or the second bit of the description i.e. (d); =0V (d{ )2 = 0. Assume
the former ((d;"); = 0) and consider the description 0100; clearly (1100); = (d;); only if (0100); = (d;");
and by proposition 3.5, h(¢B,s4)(0100) = 1, which we know to be false. A similar contradiction is
derived with respect to the classification of 1000 if we assume (d; )s = 0. Hence:

A(dpos, 1) eCB - hy, (dpos) =1 (36)
By a similar consideration of the description 0011, we conclude:
Adpos, 1) €CB - hyy, (dpos) =1 (37)

Also CB is extensible to some target concept te My;. Hence all positive exemplars in CB must
agree on at least one bit of the representation (Ilcp # ). In addition, from equations (36) & (37), it
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is clear that any bits on which the positive exemplars all agree will have the value 1 in those exemplars.
Hence:

N <i <4-Y(dpos, 1) € CB « (dpos)i = 1 (38)
V1<i<4-ujelep = Y(dpos, 1) e CB - (dpos)i = 1 (39)
VI<i<4-u; ¢Hop— Idpos,1)e CB - (dpos); =0 (40)

As a final preliminary, note that the monomial target concept from which C'B contains instances
must be defined by a subset of Il p; hence with respect to the negative exemplars in the case-base:

A CTep - A0 = LAY (dneg,0) € CB - hri(dpeg) =0 (41)

Case 1). Assume that the set of potentially relevant literals IIop is such that for some [e{1,2},
exactly one of the literals in U; also is in [Igpg. :

316{1,2} . (Eiul eU; 'UiEHCB) N (HUiGUl S Uy ?-/HCB) (42)

Let | be any such value, and let I’ be its complement i.e. the value I' € {1,2} -1’ # [. Let i be the
index of the literal in U; s.t. u; ¢lgp and let i’ be the index of the other literal in U;. By equations
(39) & (40), there must be some (dpos, 1) € CB such that (dpes)# = 1 and (dpes); = 0. In addition, from
equation (35), hy,, (dpos) = 1. Finally, let i denote a bit of the representation s.t. w;» € Uy and i" # j,
where j is the least index s.t. II = {u;} satisfies equation (41).

Consider the description d; which differs from d,,,s only on bit i"’. Clearly this is a negative instance
of hicp ey since hy,(di) = 0 and hyy, (di) = 0. From equation (34), there must be some d,,., at least
as similar to d; as the d,,s adjacent to d;. Hence:

mewmeCB~mﬂ¢4hW)zg (43)

Now j is a potentially relevant bit, so (dpes); = 1. dy differs from dp,s only on bit i" which is distinct
from j, so (d1); = 1. However, from equation (41), (dneg); = 0, and since o (di,dneg) > 2, dy and
dneq must differ precisely on this bit. Consider a final description d» adjacent to d,., but is a positive
instance of h(cp,s,)- Note there is exactly one such description. d,.s by definition had 3 bits set, and
exactly two of these have become set to 0 in the definition of d,4, leaving a single bit of d,,, with value
1. By the process of the proof, if u; e U, then this bit will be left in U;s, while if u; e Uy then this bit will
be in U;. Hence there is one bit that can be set so that ds is a positive instance of either hy;, or hy,.
This bit will not be j however, since u; will be in the half of the description where both bits of d,.., are
zero. Hence (d2); = (dneg); = 0. But j is a potentially relevant bit, so by equation (39), (d2,1) cannot
be a positive exemplar in CB, and the adjacency of dn, requires that h(cp op)(d2) = 0, contradicting
the assumption that d» is a positive instance of the represented function.

Hence there is no case-based representation of wjus + uguy in Hf/ffll(”) satisfying the assumption
(42).

Case 2) Assume instead of equation (42) that Il p matches exactly one of Uy and Us:

3l7l/6{172}'(HCBﬂUl =U)AMecpnNUy =0) (44)

Let [ & I’ be such values. Let d; be the positive instance of h(¢B,os) such that (d1)y =1 for uy eUy
and (dr); = 0 for u; e U;. By equation (39), all positive exemplars (d,.s, 1) € CB will have (dpos): =1 for
all u; ellop; since llgp = U;, we have therefore:

V(dpos, 1) e CB - o (dy, dpos) < (45)

DN | =
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Since d; is a positive instance of h(cp,»,), then it follows in addition:

1
V(dyeg,0)eCB -0 (dy,dpeg) < =

; (46)

Note that this allows no more than two distinct negative exemplars to be present in C'B. That is, a
description d,.; may be a negative exemplar only if the following hold, as demonstrated below:

#{ui€Ur|(dneg)i =1} =0 (47)
#{ui€Ull(dneg)i = 1} =1 (48)

Assume that equation (47) does not hold. Either hy, (dney) = 1, which would make d,,., a positive
instance of h<oB,o.H>, or there is exactly one u; € Uy s.t. (dneg)i = 1. In this case, either there is no more
than one literal w; € U; s.t. (dneg)i = 1, giving op (di,dneg) > 1, or hi, (dneg) = 1. Thus (dyeq,0) e CB
requires (47). Assume instead equation (48) does not hold. Either hy;,(dpeg) = 1 or dpe, agrees with dy
on the two bits of Uy, giving o (di, dpeg) > % Thus d,e, cannot be a negative exemplar in this case
either.

Take some description d,., satisfying equations (47) & (48), and assume it is not a negative exem-
plar. Consider a description dy adjacent to d4, differing from d,., only on some bit ¢ s.t. uy €Up.
Now equations (36), (37), (39) & (44) require that there is a positive exemplar (1111,1)e CB, and
o (1111,ds) = % The only negative exemplar in C' B will differ from ds on both bits in U; and addition-
ally the bit ¢ in Uy on which dy and d,,., differ, giving a similarity to ds of %. Hence d; will be a positive
instance of b »,). But da has one bit in U; set and one bit in Uy; hence hy;, (d2) = 0 and hy, (d2) = 0,
requiring that ds is a negative instance. Hence (d,..,4,0) must be a negative exemplar in CB for either
dyeq satisfying equations (47) & (48). But since Ilcg = Uy, there must be at least one bit j in U; which
is zero in all negative exemplars (dyeq,0) (equation (41)). Since this allows only one exemplar satisfying

(47) & (48) to be in the case-base, it is concluded there is no case-based representation for uyus + uzug

in HCBl(('—H satisfying equation (44).

Case 3) Assume that neither equation (42) nor (44) holds. Given the negation of (42), either
U NTlgp| = 2 or [U NIep| = 0 for le{1,2}. From (38) and the negation of (44), we infer that
all bits must be potentially relevant. Thus the case analysis can be completed by considering the case
|IIcp| = 4, requiring a unique positive exemplar (dpes, 1) € CB. Therefore the argument above can be
repeated with respect to the positive instances 1100 and 0011 giving contradictory constraints on any
negative exemplars in the case-base. Hence there can be no such negative exemplars and no case-based
representation for ujus + usuy in HCBI(UH st. Hep|=4. O

While a direct enumeration of H f/[]ilk(”’ ) for small values of N shows that the number and variety

of representable hypotheses does indeed increase as k decreases for fixed N, Examples 4.11 and 4.12
show that a simple characterisation such as Hf/[Bl(UH) D HCBlk(UH) for k < k' does not hold. Indeed,

N,k
a direct characterisation of dy ¢ (H CBl(”H)) |HCBlk 71| as a function on N and k has not yet been

achieved, and an ‘explanation’ in these terms for the differentiated learning curves in Figure 4 is not yet
available. Proposition 4.17 below, however, gives one positive result about these ‘effective hypothesis
spaces’. Although this is very much a partial characterisation of the spaces, defining as it does only a
subset of the representable hypotheses, it is reported because of conclusions that it suggests about the
optimality of the sample complexity of C B1(ox). These conclusions will be developed below once the
result has been established.

Specifically, Proposition 4.17 shows that given training samples only for monomial target concepts of a

fixed size t € M i, then there are training samples which will cause CB1 to output on that training sample

any one of the monomial functions he My; the result shows that for all NV and k, My C H,, OBl(aH)

The result is shown straightforwardly by induction on the size of the representation N. A number of
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preliminaries are required therefore to deal with relationships between functions and representations as
the order of the example space increases.

Firstly, we consider the functions in By4; whose monomial expressions differ from the representation
of a specific monomial function hy € My only on the ‘extending’ bit of the representation N + 1.

Definition 4.10 Extrapolations of monomial function. The extrapolations of a monomial function
hg € My are the functions hg,“ e Mn11 such that U e {U, U U{uny41}, UU{uns1}}-

hi e eatrn(hY) < (U =U VU =U U {unn} VU =U U {ans1})

Proposition 4.13 The union of the extrapolations of the functions fe My is equal to the class of
functions My 1.

VN >0- U extry (f) = My11
feMn

Proof: Clearly Uf ¢ My extry (f) € My41 since extry contains only functions from My 1. Also My C
UfEMN extry (f) since for every function hg,“ there is a function hﬁ where U = U’ \ {un+1,Unt1}

whose extrapolation contains thV,“. O

In a similar way, we must consider the ‘projections’ of a description de Dy as the representation is
extended:

Definition 4.11 Projections of a description. The projections of a description are constructed by
extending the description by a single new bit.

VdeDy,d € Dy41 - d e projy(d) < V1 <i < N - (d); = (d')i

Definition 4.12 Projections of a case-base. The projections of a case-base are constructed by adding
a new bit, set to one specified value, to the description of each exemplar in the case-base.

PY(CB) = {(d',n)|(d,n) e CB A d e projuy (d) A (d)x 11 = i}

A single boolean expression such as ujuy + ugug represents different functions if it is interpreted as a
function on different sized example spaces Dy and Dy:. Similarly, there are case-based representations
of these functions which are also very similar to one another. The definitions of ‘projections’ allow
simple results along these lines to be expressed below. That is, consider a boolean expression ® that,
when interpreted as a function on the N-dimensional example space Dy, represents a function fV ¢ By
which also has case-based representation (C'B, o). Proposition 4.15 below states that either projection
of CB (Definition 4.12) will give a case-based representation of the function defined on Dy by the
same boolean expression ®. For example, given (C'B,oy) as a representation for the function in Bs
represented by ujus + ujug, then both (P3(CB),on) and (P?(CB),on) will represent the function in
By represented by uyus+ujus. The result is given in two parts with Proposition 4.14 serving as a lemma,
for the proof of Proposition 4.15.

Proposition 4.14 Given a function fN+leBN+1 defined on Dyny1 and a second function hg e By
defined on Dy and represented by the boolean form ®, it is concluded that fN+! = hg“, ie. fNHL
is the function on Dy represented by the same boolean expression ®, if it can be shown that for any
description de Dy, hY (d) will return the same value as fNT1(d'), where d' is either of the projections
ofd in Dyy1.

VN >1-Vf¥* e By, hY e By-
(Vde Dy,d € Dyy1 - d eprojy(d) — (WY (d) =1 & fNTYd) =1)) - VL = pJ !
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Proof: For some pair of functions f¥*! & hY, assume the LHS of the implication:
VYde Dy,d € Dyyy -d eprojy(d) = (hE(d) =1« fNT(d) =1) (49)
It will be shown that f¥+! £ b requires a contradiction, hence the result. Assume f¥+1 £ pJ T
Ad € Dy - fNFUA) # YT (50)

Since ® depends only on the first N bits of the representation, it is clear that hg“(d’) =1«
hY (d') = 1, where d is the unique de Dy s.t. d' eprojy(d) and hence d & d' agree on the first N bits of
the representation. Hence from (50) we have a de Dy & d' e projy (d) contradicting (49) and (49) entails
N =pt 0

Proposition 4.15 Consider a function f~ € By which is represented by the boolean form ® and by the
case-based representation (CB,oy). Then the function fN“‘1 € Byy1 represented by the same boolean
form ® will be represented by both (P (CB),oy) and (PN (CB),on).

Proof: Tt must be shown that for any function hé\é B O_H>(d) defined on Dy the functions represented by
the projections of C'B will classify the projections of d positively iff hé\é B UH>(d) =1

VN > 1-Vie{0,1}-Vhiip .y € By

Vde Dy, d eprojy(d) - (h{p 4y (d) =1 ¢ hé\;}l(CB)’gw(d’) =1) (51)

Then, given Proposition 4.14, it will follow immediately that the functions hé\éB’Uw and hé\;:gvl(CB)’aw
may be represented by the same boolean form ®.

Assume there is some d e Dy such that h(cp,,,)(d) = 1, and let d’ be a projection of d in Dy 4. There
must be a positive exemplar in C'B satisfying equation (4). For any di,ds>,ds € Dy where oy (dy,d2) >
o (dy,ds), consider the projections of d; in Dyy1, dj € projy(dy). Consider also projections of dy &
ds, d} e projy(dz),ds eprojy(ds), such that (dy)n+1 = (d5)n+1. Let v;; stand for the number of bits
which d; and d; agree on; similarly, let 7 ; stand for the number of bits agreed on by d; and dj.
Since the extending bit (d}) 41 will either agree or disagree with the bit extending d» and d3, we have
Y2 — V1,2 = Y113 — 7,3 = 0, where 0 €{0,1}. Therefore we also have o (d},ds) > om(d,ds), and,
letting d' = d}, any d,.s from the projection of the case-base = dj, and any dpe, = dj:

Vie{0,1} - 3(dpos, 1) € PN (CB) -¥(dyey,0) e PY(CB) - og(d, dpos) > or(d', dney) (52)
and hé\;?\,l(CB)Jw(d’) =1, i€{0,1}. Similarly hi, . (d) =0 — h%,}l(CB)Jw(d’) = 0. Hence (51),

and as noted above, the result follows immediately from Proposition 4.14. O

By way of final preliminary, we note the following, which will allow the induction on N to proceed
independently of the number of relevant bits k.

Proposition 4.16 For a given case base CB containing exactly one positive exemplar, if there is a
function fe My s.t. CB C f, then for any larger k' s.t. k < k' < N, there is some f' € My s so that
also CB C f'.

YN >1-Y1<k<N-YOBeP (Dy x {0,1})-
(#{dpos : Dy |(dpos,1)eCB} =1 —
VfeMyy-CBCf—Vk<k <N-3f e Myw-CBCf)
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Proof: Assume some N & k, a target concept fe My and CB s.t. CB contains a single positive
exemplar and in addition CB C f. Consider the monomial representation U s.t. hY = f. Consider
also any monomial function hyr € My s.t. U C U’ and additionally hy (dt) = 1 where d* is the one
description in Dy s.t. (d¥,1)e CB. Clearly there will be < i\f: X
must be chosen referring to k&' — k out of the N — k unconstrained bits. Hence trivially V(dpss,1) e CB -
hyi (dpos) = 1. Further, any negative exemplars (dpeq,0) € CB will be negative instances of hyy and hence
negative instances of the more specific hy. Therefore V(dpeq,0) € CB - hyri (dneg) = 0, and CB C hyr. O

> such functions, since extra literals

Hence:

Proposition 4.17 The effective hypothesis space Hf/[flk(m) of the case-based learning algorithm CBl(ow),

defined with respect to the ‘unweighted feature count’ similarity measure o and the set of k-literal
monomial functions My i, contains the set of all monomial functions My defined on Dy .

VN >1-V1<k<N- MyCHD

Proof: By induction on N. Proposition 4.1 shows that the required result is equivalent to requiring
that for each fe My, there is a ‘target concept’ te My for any value 1 < k < N, and some case base
CB C t, such that héVCB,aH) = f. Therefore, it will be sufficient to show VN > 1. H(N), defining H
as below. Introducing the extra restriction that case bases contain a single positive exemplar will allow
reference to proposition 4.16 in subsequent argument:

H(N)=VfeMy -V1<k<N-3teMyy-ICBCt-p" (CB)Ahitp,,, = f
where pt (CB) = #{dyos : Dn|(dpos,1)eCB} = 1.

Base Case H(1). My = {{},{wi}, {wi}}. hq)yon) = Ry R(1,1),00,0)}.0m) = Pfury and
h<{(170)7(071)}7[,H> = h{u—l}. Hence H(l)

Inductive Step H(p) — H(p + 1). We make the inductive hypothesis H (p):
VfeM, Y1<k<p-FteM,, -ICBCt-pT(CB)A WoB oy = f (53)

Proposition 4.13 indicates that it will be sufficient to infer from equation (53) that for any monomial
function fe M, each extrapolation of f is a member of the hypothesis space with respect to M, for
values 1 < k < p+1. Proposition 4.16 in turn shows that it will be sufficient to derive from the inductive
hypothesis that for each f’eextr,(f) there is a te Mpy11 and a case-base CB C t containing just one
positive exemplar which represents f’, which will entail the results for all other values of k.

Hence it will be shown equation (53) entails that for each hf, e M), there are functions t;, to and t3
and case bases C By, C' By and C Bj satisfying:

VA e My - 3t1 € Mpy1,1 - ICB1 Cty - pt (CBy) ARG 0 =R (54)
Ay € My - 3tz Mys1,1-3CBy Cty - pt (CBo) AR, o= W0, (55)
VA € My - 3tg e Mys1,1 -3CBs Cty - pt (CBy) AW, 0 = WU (56)

For any function hj; € M, equation (53) asserts there must be some case base CB s.t. there is some

Wy €My where CB C hi and hicp v = hy. It will be shown that there are case-bases defined in

terms of C'B and T which will satisfy each of equations (54) to (56):

a) Case-based representation of hpUH,
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Given the inductive hypothesis, from Proposition 4.15 it can be inferred immediately that P} (CB)
and PF(CB) are case-based representation of i
p+1 _ pptl _ pptl
"rpem).on) = MPrEB) o) = HU (57)
Note also that P/(C'B) will contain only a single positive exemplar. To establish equation (54),
it remains only to show PP(CB) C h¥*'. For any (d',n)e P’(CB), there is a unique d such that
d' eproj,(d) and (d,n) e CB (definition 4.12). Since CB C hf, (d,n)e CB — hf.(d) = n. Since d & d'
agree on their first p bits and also h%. € M, ;. so that T refers only to the first p bits of representation,
hh.(d) = 1 & k&' (d') = 1. Hence also h%"'(d’) = n and therefore (d',n)e PP(CB) — hb™ (d') = n.
Hence the following result, concluding (54):

P}(CB) C b (58)
b) Case-based representation of hl[}tl{u,,ﬂ}' It will be shown that the case base PF(CB) U {(dpew,0)} is
a case-based representation of hpUtl{upH}, where d,,.., is defined as follows:
(dnew)z = |1 - (dPOS)Z|
(dnew)i = (dpos)i where 1<i<p ANi#z
(dnew)p+1 =0

dpos is the description of the unique positive exemplar in PF(CB), inherited from C'B, and x is the value
1 <2< N st u, eT VugeT, T being the representation of the target function h’} eMp.

By equation (4), we have h?;f%’(CB)u{(d,m,,o)},am = fP+1 where:

; (59)
0 otherwise

! _
Fr4(g) = { U if B oy oy (@) = LA 05(d dpos) > 031(dy dpews)
From the definition of d,c., we have 0w (d, dpos) > 0u(d, dpew) iff d agrees with dp.s on a strict
majority of the bits {us,up+1}; note (dpos)pr1 = 1 since (dpos, 1) € PP(CB), while (dnew)pr1 = 0 by
definition. (All other bits are irrelevant to the comparison since they are common to both dp,s and
dnew)- Hence:

ou(d,dpos) > om(d, dnew) < ((d)e = (dpos)z A (d)py1 = 1) (60)
Substituting (57) and (60) in (59):
+1 _ gp+l _ pptl
h?Pf(CB)U{(dnew,O)},am = 7 = Ay (61)

since hpU+1(d) =1 implies that (d), must have the same value as (dpos)e-

Clearly, the new case-base still contains a single positive exemplar; to satisfy equation (55), it
must only be shown P?(CB) U {(dnew,0)} C k5. From (58), we have PP(CB) C hZt'. Note also
h’;‘l(dnew) = 0 since by definition, d,,, will fail to satisfy T'. Hence (dnew,0) eh’;'l and P'(CB) U
{(dnew, 0)} C R

¢) Case-based representation of hll)ﬁul{m}' Equally, the case base Py (CB) U{(d,.,,0)}, where d,,.,, =

Anew €xcept (d], o) p+1 = 1 (dpew defined as above), is an equivalent representation to U U{w,;1}. Hence
(56). O

As an immediate corollary of Proposition 4.17, we have:
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CBl(UH CBI(O'H)

Corollary 4.18 Lower bound on VC Dimension of H;; . The VC Dimension of Hy oo
the effective hypothesis space of CBl(oy) with respect to the concept space My 1, is at least of the order
of N.

dyc(Hy 2 7)) = ()

Proof: HCBl(aH)

shattered by HCBl(UH , and the VC dimension of HCBl(UH will be at least that of My, which is O(V)
(AB92, p.76] [Hangs, p.193]. O

contains My (proposition 4.17). Therefore any sample shattered by My will be

In contrast to corollary 4.18, note the following results:

Proposition 4.19 Upper bound on VC Dimension of My . The VC Dimension of My} is no
greater than 1 + log, ( JZ >

Proof: Let T be a sample of size v, which orders the set of examples X and is shattered by My .
Consider that there are 2"~! subsets of X which contain a particular z; € X, and also that there are

exactly ( ]]Z > functions fe My, that classify z; positively. Since each subset of X must be labelled

by a distinct member of My 1, we have vl < < JZ ), and hence v <1+ log, ( JZ > O

Proposition 4.20 Lower bound on VC Dimension of My . The VC Dimension of the set of
functions My i, is at least 1 + |logy(N — k +1)].

Proof: Proof will be by demonstrating the construction of a sample T = (x1,...,2,,) of size m =
1+ [logy(N — k + 1)], and showing that it is shattered by My x. Let [ = |logy(N — k + 1)], so that 2!
is the largest power of 2 no greater than (N — k + 1). Consider the powerset P S where S is the set of
tokens {t1,...,t+1}; an enumeration over the powerset is assumed so that the elements may be referred
to as Si,...,S9+1. The enumeration is also required to have the property that for any pair of disjoint
subsets whose union is S, their indices must have the sum 2!+ + 1:

VS;, Sy C€S-S;NSj =0OAS;US; =8 —j+j —1=2"*" (62)

It is asserted this condition can be satisfied without loss of generality. To define T, set the jth bit,
1<j <N of example z;, 1 <i <[+ 1, as follows:

(xi)j = 1 iftiES]‘ 1<73< 9!
(zi)j = O ift; ¢5;  1<j<2
(:); 1 2l < j <N

Since 2! < (N — k + 1), this definition reserves at least k — 1 bits of the representation and sets them to
1; the remaining bits are defined s.t. bit 7 of the representation has value 1 for any example z; if and
only if the corresponding token ¢; belongs to S;, some specific subset of S.

The proof must now show how there exists a total, injective function f mapping between P S and
the set of functions My such that

VSJ‘ ePS: f(SJ)(l'.b) =1¢& tiGSj; (63)

this would demonstrate the shattering of T by My k. |S| = [+ 1, so values of j in the range 1 < j < 2!+1
must be accounted for. The subranges 1 < j < 2 and 2! +1 <1 < 2% are treated as separate cases:
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1 < j < 2. For some S; therefore, note (z;); = 1 iff ;€ S;. Therefore equation (63) is satisfied by
the k-literal monomial function m such that m(z) = 1 iff the value 1 is assigned to (x); and the k — 1
bits (z);, 2! <j <2/ +k—1.

2l +1 < j < 2!*1. For these S;, note that there is a unique subset S; s.t. S; = S\ S; and by
equation (62) j' = 2%t — j + 1. Hence 1 < j' < 2! and (z;); = 1 iff t;€ S;. Since in addition it is clear
that t;eS; < t; £S;, we have (x;);; = 0 > t;€S;. Therefore equation (63) is satisfied by m e My
such that m(z) = 1 iff (x); has the value 0 and the k — 1 bits (z);, 2! < j' < 2! + k — 1, all have value
1.0

Proposition 4.21 VC Dimension of My,. The VC Dimension of the set of functions My, is
1+ [log,(N)].

Proof: From proposition 4.19 VCDim(My 1) < 1+4log,(N), while from proposition 4.20, VCDim(My 1) >
1+ [log,(N)|. O

While an exact result is possible for the case of k = 1, the bounds of propositions 4.19 and 4.20 are
not tight for other values of &k (except where k = N and dyc(My,n) = 1). However, for all 1 <k < N,
we have upper and lower bounds on dy ¢ (My ;) which increase in log N, even though the relationship to
k is not clear. (We have however explored the maximal shattered samples with respect to My » and My 3
by search of the sample space; the data generated is consistent with the hypothesis that the actual VC
dimension fits the upper bound to within a constant, increasing linearly in &’ where k' = min(k, N — k)
as well as in log N. It has not been possible to establish this analytically, however.)

Hence, while the VC dimension of the hypothesis space of CBl(oy) with respect to the set of
functions My i is at least of the order of N (Corollary 4.18), the VC dimension of My, itself is O(log N)
(Proposition 4.19 and 4.20). Equations (23) & (24) (and the discussion of p. 17 ff) lead us to believe
that this qualitative difference indicates that CB1l(op) is a less than optimal learning algorithm (with
respect to sample complexity) for the space My . That is, as N increases, we expect that the number
of examples CB1(oy) needs in order to reach an accurate hypothesis will rapidly outgrow the number
needed by a learning algorithm whose hypothesis space represents exactly the functions contained in
MN,k-

4.4 Conclusions: Learning Behaviour of C'Bl(oy)

Considering the result of Corollary 4.6, it is clear that CB1(oy) is a general purpose learning algorithm
with a rich hypothesis language. Specifically, for any fixed definite similarity measure (Definition 4.3)
such as oy, corollaries 4.6 and 4.4 indicate that there is a case-based representation (CB,opy) for any
{0, 1}-valued total function on Dy. In addition, proposition 4.1 shows that for any such representation,
there is a training sample that causes CBl(cy) to output that representation. Thus corollary 4.5
states formally that CB1(oy) is a general purpose learning algorithm in the sense of the PAC learning
framework, ‘probably’ able to generate an arbitrarily good approximation to any classification of the
example space provided that enough examples are available to the learner.

However, in considering the sample complexity of C B1(oy), it has been shown here (Proposition 4.17)
that the hypothesis space of CB1(og) with respect to the concept space My j includes not only My
but also all monomial functions My . In addition to that formal result, direct enumeration establishes the
presence of functions such as u; +us.u3 and uq.us +uq.ug+us.us in Hf/[fll(m) and that |Hf4]§1kFJH)| does

indeed increase as k decreases. Unfortunately, the partial characterisation of HAC/[?A(UH) of Proposition

4.17 does not yet allow us to account directly for the differentiation of the learning curves in Figure 4
in terms of differences in the hypothesis space. However, arguments related to equations (23) and (24)
lead us to believe in addition that, for all values of k, the presence of these spurious hypotheses will
make C'Bl(oy) a relatively inefficient learning algorithm for My , (with respect to sample complexity)
compared to a consistent learning algorithm which can represent only the functions My .
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We suggest that this is a natural corollary of the generality of CB1(cy); this seems a clear example
of the concept of inductive bias [Hau88] [Sch94]. ‘Bias’ refers to any prior information or knowledge
that might be encoded in a learning algorithm that defines a preference for choosing a hypothesis from
the many that might be available to account for the training data. “If a bias is strong and correct,
then the concept-learning task is relatively easy because the concept learner will be guided to the
selection of the target concept” [Utg86, p.114], while “[if no inductive bias| is supplied for comparing
competing hypotheses [consistent with the available exemplars], than all possible classifications of the
unseen instances are equally possible and no inductive method can do better on average than random
guessing” [Hau88, p.178]. Altering the ‘bias’ of a learning algorithm allows a trade-off between generality
and sample complexity to be managed; more bias will lead to greater accuracy for the same size of training
sample, but the increased bias will only be correct for a small number of possible target concepts. On
the other hand, as bias is weakened, the learner will be able to output hypotheses approximating a
wider range of target concepts, but will, on average, require more examples before converging to a good
approximation.

It seems clear then, that the choice of oy as similarity measure instantiates CB1(c) as a low bias
learning algorithm that will successfully learn a wide range of target concepts at the cost of generally
high sample complexity. This is sometimes seen as characteristic of case-based learning, a tendency
reflected in descriptions of case-based reasoning as a paradigm suitable for knowledge-poor domains e.g.
[CCK93]. This stance seems incorrect; in contrast, Wess and Globig have already pointed out and ably
demonstrated that “the [similarity] measure (respectively the way to modify the measure) is the bias
of case-based reasoning” [WG94, p.90]. That is, with some prior knowledge of the concept space to
be learnt, the similarity measure can be manipulated so that the hypotheses output by the case-based
learner are more likely to be close to the possible target concepts. Such strategies demonstrably improve
efficiency with respect to sample size [GW94] [WG94], although performance will obviously be degraded
outside the chosen concept space. These issues will be explored further in the following section.

5 Case-Based Learning with Variable Similarity Measures

CBl1(0), considered in the previous section, is a simple case-based learning algorithm that learns with
a fixed similarity measure and adjusts its hypothesis only by adding cases to the case-base. Globig &
Wess assert, however, that “in a case-based learner, two processes - reducing the size of the learnable
concepts (hypothesis space) and increasing the size of the case-base - should be performed”[WG94, p.88].
In this section, therefore, we wish to investigate how the hypothesis space can be manipulated directly
by the choice of similarity measure. This will be done by defining C'B2, a variant of C'B1(c) which
we assume to be equipped with a certain, ideal, similarity measure. As before, our main concern is
to establish the sample complexity of C B2, and the method used will be the same, via an exploration
of the ‘effective hypothesis space’ of C B2 with respect to various classes of target concept. Thus §5.1
reports our investigation of the class of functions having a case-based representation with respect to
the ideally weighted similarity measure oz,, §5.2 proves the consistency of C'B2, §5.3 reports on the
empirically observed average case learning behaviour of CB2 and finally §5.4 presents results on the
sample complexity of C' B2. The main results to be presented are:

e In §5.1, we first consider whether a case-base of exemplars for a monomial target function te My
actually gives a representation of ¢ in the sense defined within this section. A precise character-
isation of such case-bases is given in Proposition 5.1. We are then able to give a straightforward
method (Definition 5.4 and Proposition 5.5) for establishing whether a particular function fe By
may be output by C'B2 on a training sample for a monomial target concept. In the remainder of
this first subsection we then develop two necessary conditions for membership of the hypothesis
space of C'B2 with respect to monomial target concepts t e M ; together these conditions give a
reasonable bound on this space of functions (Proposition 5.15).
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e In §5.4, in contrast to Examples 4.11 & 4.12 we are able to show that H{%> C Hf">  for k < k'

(Proposition 5.20), indicating that the upper bound on the sample complexity of C'B2 given by
equations (23) and (24) must increase with k. Then by considering two different concepts of a
‘covering net’ [AA91, p 554] [KV94, pp 57-58], we are able to present various upper bounds on the
sample complexity of C'B2 (Corollary 5.23 & Corollary 5.26).

An algorithm suitable for learning My which both constructs a case-base and manipulates the
similarity measure is presented by Globig & Wess [WG94, Fig 4], given below as definition 5.1. The
definition refers to the weighted feature sum oz of definition 3.2.

Definition 5.1 VS-CBR Learning Algorithm for Functions in My c.f. [WG94, Fig 4]

define the functions f;:{0,1} = {0,1},s.t. fi(n)=1,1<i< N,ne{0,1}
set CB=10
for i =1 tom do
if b; =1 then
if -3deDy - (d,1) e CB then set CB =CBU {(z;,1)}
for j = 1 to N do
set f](l — (xl)]) =0
else

set CB=CBU{(z;,0)}
for i = 1 to N do
if fl(O) =1V fl(l) =1 then

set w; =1
else
set w; =0

set VS—CBR(E) = h(CB

1T

where 5 = ((x;, b))%, is a training sample from (Dy x {0,1})™.

This apparently elaborate algorithm can be understood in relation to the ‘standard learning algorithm
for monomials’ [Val84a]. A single positive exemplar is kept as a ‘prototype’ of the monomial concept.
In the same fashion as in the standard monomial algorithm, the other positive exemplars are used to
determine whether or not a specific bit is necessary to the definition of the concept. This information
is recorded in the vector of functions f;. After processing any sample 3, f;(n) = 1 only if no positive
exemplar d,os has been processed such that (dp,s); = n. This means that in converting the f vector
to the weight vector w, VS-CBR can infer that a bit of the representation is irrelevant to the definition
of the concept whenever both possible values have been seen in positive exemplars and hence f;(0) =
O A f;(1) = 0. In this case, the corresponding weight w; is set to 0 so that bit 4 is ignored in the feature
sum; otherwise, it is set to 1.

Rather than attempting to analyse this relatively complex algorithm, we define a related but more
straightforward strategy for learning using the case-based representation. The similarity measure in the
hypothesis chosen by C B2, defined below, weights bits as relevant or irrelevant according to whether
they are determined by the target concept. This is clearly the ideal being approximated by VS-CBR,
in that the ideally weighted similarity measure o4, will eventually be inferred by VS-CBR given enough
positive instances of the target concept.

Definition 5.2 CB2 Learning Algorithm for Case-Based Classifiers
set CB=1

for i = 1 to m do
set CB=CBU {(xl,bl)}
set CB2(§) = h(CB,a,— N

wi
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where 3 = ((a;,b;))™, is a training sample from (Dy x {0,1})™ and the weight vector W, is defined

1 if uieUt\/u_ieUt
(wt)i =

0 otherwise (64)

and where Uy is the monomial expression s.t. t = hy,.

Obviously, while VS-CBR is executable in that it constructs a weight vector to mask out irrelevant
bits only so far as these can be inferred from the training sample, CB2 ‘cheats’ by defining such a
weight vector with perfect knowledge of the target concept. This clearly is not an algorithmic learning
strategy, but has the advantage that it greatly simplifies the representation of hypotheses. The results
presented in this section are, as a direct consequence, somewhat more substantial than those in §4. This
definition is also useful because it separates the purely case-based part of learning, the collection of cases
in the case-base, from the process of inferring the relevant bits for the similarity measure. The latter is,
as shown above, merely an instance of an otherwise very well known algorithm. This separation then
demonstrates in the limit the maximum possible contribution to case-based learning that might be made
by this approach of changing weights in the similarity measure. This contribution is assessed in the
conclusions of §5.4 and §6.

5.1 Case-based Representation using the Weighted Feature Count oy,

Definition 5.3 A function fe By is CB2-representable with respect to some target concept te My
if there is a case-base CB extensible to t (CB C t) s.t. (CB,og,) is a case-based representation for f

(hicB,om ) = f).

O
This section will consider the problem of characterising the functions that are C'B2-representable
with respect to some target concept ¢t. Note that C'B2 (definition 5.2) is defined specifically for learning
monomial functions, so only target concepts t e My are considered. For convenience, H; will be used to

denote the set of functions that are C B2-representable with respect to a target concept t.
Hy ={h¢s U_t>|CB Ct} (65)

Y

Introducing zero weights into the similarity measure as in definitions 5.1 and 5.2 has the result that
descriptions d,d' € Dy which differ only on zero-weighted bits of the representation are equivalent for
the purposes of classification. As in [WG94], let =, define an equivalence relation s.t. d; =, dy ¢
o(dy,d2) = 1. As Wess and Globig [WG94, p.86] state, the same classification must be shared by all
descriptions in each equivalence class in the partition (Dy\ =) for any function defined by the similarity
function o, and in addition the similarity of two descriptions in such an equivalence class to any de Dy
will always be the same:

VdeDy,De(Dy\ ~),dy,ds € D - o(dy,d) = o(dy, d) (66)

In the special case of a monomial target function t e My, then also all positive instances of ¢ will lie
in the same class of the partition (Dy\ ~,_ ) defined by the ‘ideal’ similarity measure oz,. This has
the result that the case-based semantics of eQuation (4) are simplified. In the general case of equation
(4), the case-based semantics nests the comparison of similarities within an existential quantification
over the positive exemplars in the case-base; the interpretation of the case-base in the worst case must
therefore consider every positive exemplar. Given a case-base C'B extensible to some target concept
t e My however, the interpretation of the representation (C'B, o,) need only consider similarities with
respect to a single positive instance of the target concept. This is a result of equation (66), since the
quantification over negative exemplars (V(dpeq,0) € CB- 05, (d, dpos) > 0w, (d, dneg)) will be satisfied with
respect to some positive exemplar d,.s if and only if it is satisfied with respect to all positive instances of
the target concept. This allows a number of results to be proved about representations (C'B, 05, ) using
the ideally weighted similarity measure oy, which do not hold in the general case of representations
containing the unweighted feature count op.
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Counting the Case-Based Representations of te My

Firstly, it is possible to define conditions necessary and sufficient to establish that a case-base C'B is
a representation, with respect to the weighted similarity measure oz,, of the target concept ¢. The
number of exact representations for a given target concept may then be counted. The relevant results
are expressed below as propositions 5.1 & 5.4.

Proposition 5.1 For any monomial target concept t e My i, then a case-base CB C t which is extens-
ible to t is a representation of the target concept t with respect to the weighted similarity measure o,
(h<CB’am> =t) if and only if the case-base CB contains:

1. At least one positive exemplar, and,

2. Negative exemplars s.t. for every relevant bit j s.t. {u;,u;} NU; # O, then given the description

d;-LO defined as follows in terms of any positive instance of the target concept d™ s.t. t(d¥) = 1:
(disg)i = ()i i)
(di); = 1-(d%);

then there is a negative exemplar (d—,0) e CB s.t. o, (d,

- k=1
j»—>07d ) > Tk

VlSkSN'VtEMN7k'VCBgt'h<CB’0—

T )

=t

—1
[(3(dyos, 1) € CB) A (V1< j < N - {uy, 7} AUy # O — Hduey,0) € OB - 7, (d". 0 deg) > -

Frrtaeg) 2 )
Proof: 1) Only if: Assume that h Byom,) =1 Since there is at least one positive instance d of any
monomial function te My, then hcp,_ ) has value 1 on this description and hence there must have
been at least one positive exemplar in C'B. Consider instead some bit j relevant to the definition of

the target concept ({u;,@;} NU; # ©O) and the ‘nearly positive’ instance dj',_m defined in terms of a
positive instance d* as above. Now t(djf_m) = 0, but oy, (d;;o, dpos) = k—;l for any positive exemplar

(dpos, 1) in the case-base. But since h(opw,) = t, then hicp o >(dj',_>0) =0, and hence V(dpos,1) eCB -

wi

(dneq,0) € CB - 05, (d, 0, dpos) < 05,(d 0, dneg), and hence I(dneg, 0) e CB - o, (1,0, dneg) > L.
2) If: Assume the RHS of the expression, so that for some case-base CB C t:
dyos € Dy - (dpos; 1) eCB - (67)
VI<j<N-{u;,u;} NU #Q = dneg € Dy - (dney,0) e CB Ao, (d g, dneg) > k—;l (68)

It must be shown that for any such case-base C'B, h<CB’am> = t. We wish to show initially h<oB,o.m (d) =
1 — t(d) = 1. For a proof by contradiction, take a description de Dy which is a positive instance of
h<CB70m> and assume t(d) = 0. Let d™ denote the description of any positive instance of {. Now if
t(d) = 0 then d must disagree with d*+ on ¢ ‘relevant’ bits of the representation, s.t. 1 < § < k. Hence
oz, (d,d") = %, and by equation (4) then for any negative exemplar in the case-base:

k—¢
V(dneg,0) e CB - 055, (d, dpeg) < 7 (69)
Now, consider the description deO where j is the least index s.t. j is a relevant bit on which d & d*
disagree. Now d and dj_l—>0 must disagree on precisely 0 — 1 relevant bits, giving o, (d, dj'HO) = %.

But, from equation (68), there is a negative exemplar (dyey,0) € CB s.t. o, (d]

k—1
]Hmdneg) > “—. Hence
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by the ‘“transitivity’ of oz (Proposition 3.1), we have o, (d,dney) > £22, contradicting equation (69).
Hence h<oB,gﬁt>(d) =1—=1t(d) =1.

Assume instead that de Dy is a positive instance of t. Clearly o, (d, dpos) = 1, for the positive exem-
plar (dpes, 1) e CB required by equation (67). Additionally, since any negative instances of ¢ will disagree
with d on at least one relevant bit, then o, (d, d,.ey) < 1 for any negative exemplar (d,.4,0) € CB. Hence
h(cB,os, (d) = 1. Thus we have h(cB,ow,) (d)=1«1td)=1.0

Proposition 5.1 allows the number of representations of a particular target concept te My to be
counted straightforwardly and expressed as a function of N and k. For some such function, we define
the quantity N; to be the number of case-bases CB C t s.t. (CB,o0w,) is a case-based representation for
the target concept te My .

= #{CB C t|h(cB,om,) =t} (70)

Counsider the partition (Dy\ = Rom, ) defined on the example space as above. Let D; be the set of those
equivalence classes from (Dy\ ~ Roo ) s.t. all descriptions in D' e D; differ from the positive instances of
t on exactly one relevant bit of the representatlon and D, be those equivalence classes from (Dn\ ~o_ )
whose members disagree with the positive instances on two relevant bits.

D, = {D'e(Dy\ z(,ﬁt>|VcleD',dpoS €Dy - t(dpos) =1 = 0w, (d, dpos) = %} (71)

k—2
Dy = {D'e(Dy\ z(,ﬁt>|VdeD',dpoS €Dy - t(dpos) =1 = 0w, (d, dpos) = —} (72)

Now by proposition 5.1, whether or not hcp, o) = = t depends only on the presence of a positive
exemplar, and some spec1ﬁc negative exemplars, all 'of which differ from the positive exemplars on no
more than two of the relevant bits of the representation i.e. (dyeq,0)€CB s.t. o, (dpeg, dpos) > k— 2.
Specifically, for every D’ e Dy, either D’ is non-empty (i.e. ¥Y(d,n)eCB-d ¢D'), or there is one of the
equivalence classes D" € Dy adjacent to D' (Vd' e D', d" ¢ D" - o3, (d',d") = kk;l) which is non-empty.

Given a specific subset of D; s.t. i of the equivalence classes in D’ e D; (out of the total of k)
are ‘empty’, i.e. not covered by some exemplar in the case-base (V(d,n)eCB -d £D'), then let Zy ;
be the number of subsets of D> that may be chosen such that if precisely those D’ e Dy are non-empty
(containing some exemplar of the case-base), then the function represented by (C'B, o, ) will be precisely
t (provided that the case-base also contains some positive exemplar).

Zyi =#{D C D3|(VD" €Dy -D"eD ¢ 3de D" - (d,0) e CB) = hicp,» o) = t} (73)
Lemma 5.2 Pascal’s Triangle. e.g. [AB92, p.78]

a+1Y\ a a
va’bzo'(b+1>_<b+l>+(b>

Proposition 5.3 The value of Zy, ; is defined for all 0 <i < k as follows:

" ("2")
Ny [0 2
Z,M_Z%( 1) (x>2
Proof: by induction on i. BaseCase i = 0. If all D'e D; are hit by some exemplar in the case-base,

;)
then any of the 2< 2 subsets of Dy will be consistent with a representation of ¢. As deﬁned above

Zpp =1x1x 2< 2 . Inductive Step. Assume that Z, = > "_ (-1)" < i > 2 for
p+1 T p + 1 < >
some value 0 < p < k. It must be shown that Zj ,41 = > > (—1)". 2
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Take a set Ap11 of p+ 1 classes from D; (e.g. those classes D’ e D; which differ from the positive
instances of ¢ on the first p+ 1 relevant bits of the representation). Similarly let A, be the set of classes
from D; whose descriptions disagree with positive instances of ¢ on the first p bits of the representation.
Assume that all classes D' e A, are empty.

Note there are Zj, , subsets of Dy which, when non-empty, are sufficient for the representation of ¢
given that all classes D' e A, are empty. However, not all these Zj, , subsets will contain a class D" € D
whose descriptions are adjacent to those of the class in Ap1 \ A,. Thus Zj p41 = Zip, — Y, where Y
is the number of subsets of D, satisfying the property Y,(A), i.e. A is a subset of Dy which covers the
empty classes in A, but which do not contain any D" e D, whose descriptions are adjacent to those of
the class in Apy1 \ A,.

Consider the set D}, = {D" € Ds|VD' ¢ D1 -{D'} = Apy1\ A, = Vd' e D', d" e D" -o5,(d',d") < %},
i.e. the set of elements of Dy whose descriptions are not adjacent to the extra class in A,yq1 \ A,. By
definition, all A satisfying Y,(A) are also in D5. Thus we need only count the number of elements in
D), which cover A,. This is clearly the same problem as counting Z_; ,. Hence

Zip+1 = Zkp — Lr-1,p (74)
Thus from the inductive hypothesis:
Zk:,p+1 = Zk:,p - Z/cfl,p
k—x k—z-—1

- P 2 - P 2
= Y (7)2 I (7)2

L ()l ) g » L2
_ T z'—1
= Y (7)2 IS (702

r—1

-l o (1) ()l )

r=

:2(’5%1

T

i K . ) " ( zo1 )] 2( e ) +(—1)P+12( o )
and by lemma 5.2: 1

Hence the number of representations of a target concept t e My ; can be stated:

Proposition 5.4 Representations of t e My ;. The number N, of case-based representations (CB, o,)
s.t. CB Ct and hicp,o y =t for some function te My, is defined as follows:

Ny = (22"~ 1).22”( f )zk: ( ’f ) Zy

A

where:

D Zi(—l)g”( i )2( kgfﬂ )



Proof: First consider how many subsets D' of the partition (Dy,~,_ ) there are s.t. if the intersections
of those D' with the descriptions of the exemplars in a case-base CB C t are non-empty then the
function represented by (CB, 0, ) is precisely ¢. As above for some case-base C'B s.t. h<CB70m> =1, let
7 be the number of elements in D; which are empty. For a particular value of ¢, the D’ containing the

positive instances of ¢ must be non-empty, there are ( ; > ways of choosing k — ¢ elements of D; to be

non-empty, there are Z;, ; ways of choosing sufficient elements from D5, and the remaining E§>2 < f )

I k
Zj>z J k k .
elements of D may be chosen freely. Hence there are 2 Yo ; Zy,; ways of choosing
elements of D to be non-empty. Finally, each of these non-empty equivalence classes contains 2V —F
-k
descriptions, giving (22N — 1) ways of choosing exemplars from each equivalence class to make that

class non-empty. O

‘Canonical’ Case-Bases and Membership of H;

The ‘counting’ result of Proposition 5.4 follows immediately from the characterisation of a case-base
representing the target concept t given in Proposition 5.1. In addition, the form of the condition
in Proposition 5.1 shows that (C'B,oy,) is a stable representation for a target concept te My g, in
that all case-bases CB’ derived from C'B by the addition of exemplars for ¢t (CB C CB' C t) are
also representations for ¢t with respect to og,. This is clearly the case, since C'B must contain the
exemplars required by proposition 5.1 (necessity), and any C B’ O C'B will also contain those exemplars,
implying that C'B’ also represents ¢ (sufficiency). However, this will not be true in the case of case-based
representations using the unweighted feature count o, nor will it be true in general of other formulations
of case-based learning, e.g. [Glo95] [SDHK95].

The ‘stability’ of representations of target concepts with respect to o, is one corollary of the sim-
plified semantics of the case-based representation in this special case. Another corollary is that for
C B2-representable functions in H; (equation (65)) other than ¢, there is a unique ‘maximal’ case-base
that can be computed from the boolean representation of the functions. This gives a straightforward
way of determining membership of H;. Specifically, the results below will demonstrate:

e Firstly, a canonical case-base C'B(y;) can be defined such that if a function feBy is C'B2-
representable with respect to a function t e My (f € Hy), then (CB(y,;), 0%,) will be a representation
for f (Definition 5.4 and Proposition 5.5). This gives a straightforward way, given a boolean rep-
resentation of a function f e By, of determining whether the function is C B2-representable w.r.t.
to some te My. This is in contrast to the problem of determining whether some function fe By
has a case-based representation with respect to the unweighted similarity measure oy and some
target concept, for which we have no better method than systematically considering all possible
case-bases.

e Secondly, these canonical case-bases are maximal, in that all case-bases CB Cts.t. hicpo ) = f

wy

are subsets of the canonical case-base C'B(y,) (Also Proposition 5.5).

e Finally, these canonical case-bases are well-behaved in the sense that, given a function f e H; which
is represented by C B ), then for any function f" which generalises f (f(d) =1 — f'(d) = 1) and
which is also in H¢, the canonical case-base C'B(; ;) will be a subset of C'B(s) (Proposition 5.8).

Definition 5.4 Canonical Case-Base. The canonical (‘mazimal’) case-base C By, representing a
function f e H; with respect to some target function t e My is the case-base containing a positive exemplar
for each positive instance of the target function t, and a negative exemplar for each negative instance of
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t, so long as that negative exemplar causes no positive instance of f to be misclassified.

Vde Dy - (t(d) =1A3d' e Dy - f(d') =1) & (d,1) € CByy) (75)
VdeDy-

(t(d) = OA N ¢ Dy - (@) =1 = 3d" e Dy - 1(d") = 1 A o, (d'sd) < o, (@', d")]) 5 (d,0) ¢ OBy

(76)

Proposition 5.5 For any target concept te My, then for a case-base CB C t let f denote the function
represented by C'B, h(CB,U;f>' Then:

1. f will also be represented by the canonical representation (C By, 0w, ).
2. CB will also be a subset of the canonical case-base C By ).

Proof: Assume that there is some case-base C'B extensible to ¢ that represents fe By with respect to
the measure o, .

CB CUtAh(eB oy =f (77)
Define a case-base CB,,, .. as follows:
CB C CByey Ct (78)
hCBasom,) = f (79)
and

CBnas| > |CB| (80)

where C'B"” is any case-base satisfying:
CBCCB"Ct (81)
hicprony =f (82)

The proof below must cover the following issues:
1. It must be shown that there is exactly one case-base satisfying the equations for C B,

2. It must then be shown that this maximal extension of the representing case-base is the canonical
case-base C' By ) of definition 5.4

1) CByaz s uniquely defined

There will always be at least one such case-base (if C'B cannot be extended without changing the
representation, then C'B,,.. = CB). It must also be shown that there is no more than one maximal
extension. For a proof by contradiction, assume the contrary, that there are two distinct case-bases
CB!, .. and CB? satisfying equations (78) to (80). By equation (80) these two case-bases must have
the same cardinality. Since they are in addition distinct, there must be at least one exemplar in CB}, .
which is in neither CB nor CB? Now this exemplar must be either positive or negative. In the

case of a positive exemplar (d;,,,, 1), consider the case-base CB2,, U{(d},,,1)}. CB2,, must already

max max

contain at least one positive exemplar. If not, f would have no positive instances, and C B’ . could have

no positive exemplar (d;.,,,1). Since the use of the weighted measure oz, makes all positive instances
of t equivalent for the purposes of classification, then CB2,, U {(d}.,,1)} must represent exactly the
same function as CB2 ., namely f. Hence, neither CB} ,. nor CB2 . is maximal, contrary to our
assumption.

On the other hand, assume that C'B! , contains an additional negative exemplar (d;;

T

max ’I’LE’UJ70)7 and
consider the case-base CB2,,. U {(d,.,,0)}. It is clear that adding a negative exemplar to a case-
base will not add any new positive instances to the function represented, i.e. the positive instances
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of hicp: . It must only be

max

U{(dsou,0) 1o ) Will be a subset of the positive instances of h(cp
new:0)},05,

2 —
max ro'mt

shown that there are no positive instances of h B2u. 0,
of (d-.,,0) to CB2 . Since CB!

new? mazx* max

is a positive instance of f:

y which will become negative by the addition

(which contains (d 0)) represents f, then for any de Dy which

new’

Vd' e Dy - t(d') =1 — og,(d,d') > og,(d,d (83)

’I’LE’UJ)

Therefore, since (C B2, ., 0, ) is also a representation for f, for any positive instance d of hcp2

mazx> “laz,0'5t>7

the positive instances of ¢ are strictly more similar to d than d is to d Therefore its classification

new-*

will not be changed by the addition of (d,,,,0) to CB2,,.. So, both (d,.,,,0) ¢CB2 .. and also
hiere Uz, 00 omy = - Hence again neither CBy,,, nor OB}, is maximal, contradicting the

original assumption. So by contradiction there can be no more than one maximal case-base.
2) CBmaz = CB(sy)

If it can be shown that C B, = C'B(y,), then by equation (79) we have the result that (C By s, 0,)
is a representation for f and by equation (78) the result that the canonical case-base C'Byy ) includes
all representing case-bases C'B.

Assume that there is a positive exemplar (dpos,1) € CBiop. Now CBpge, C t, so immediately
t(dpos) = 1. Since in addition there will be at least one point in the example space classified posit-
ively (the description d,.s), we have:

VdeDy - (d,1) € CBpas — (t(d) = 1A 3d e Dy - f(d') = 1) (84)

Assume instead that a description d is a positive instance of ¢ and that f has at least one positive
instance. Finally assume also that (d,1) is not a positive exemplar in CB,,,.. Consider the case-base
CB' = CBpaz U {(d,1)}. Clearly CB,,.. € CB’ C (. Note in addition that the similarity of any
description d' € Dy to the ‘missing’ description d will be the same as the similarity of d’ to any other
positive instance of ¢t. Thus so long as C' B, contains some positive exemplars (which must be the case
given that f has at least one positive instance), the function represented by C'B’ will be exactly that
represented by CB,,,... Hence h<CB’,amt> = h<CBr,,la1,a;t> = f, and equation (80) is contradicted. Thus:

VdeDy - (t(d) = 1A3d e Dy - f(d) = 1) = (d,1) € CBpas (85)

Assume now that there exists some negative exemplar (dy.gy,0) in CBi,q.. Again, by equation (78),
we infer t(dpeq) =0 and
Vde Dy - (d,0) € CBpae — t(d) = 0 (86)

Still assuming that (dpeq,0) is an exemplar in CBy,q,, from the fact that (CBpes,0w,) is a rep-
resentation of f, then it is clear that any positive instance of f must be more similar to the positive
exemplars in CB,,q, than to d,.,. Since any positive exemplar in CB,,, is also a positive instance of
t, then also:

Vde Dy - (d,0) € CBpaz — [Vd' € Dy - f(d') =1 —= 3d" e Dy - t(d") =1 Aoy, (d',d) < og,(d',d")] (87)

Finally assume that for some negative instance of the target concept d,.q € Dn, then the statement
holds as above that any positive instance of f must be more similar to the positive instances of ¢ than
to dpeg, 1.€. it is assumed

t(dneg) = 0 (88)
Vd eDy - f(d)=1—=3d"eDy - t(d") = 1 Aoz, (d,dney) < o, (d',d") (89)

Assume that (dneq,0) is not an exemplar in C'B,,,,, and consider the case-base CB' = CB,,q, U
{(dneq,0)}. Since t(dpeg) = 0 then CB' C ¢ still. As noted above, adding a negative exemplar to the
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case-base can only result in points in the example space being re-classified from positive to negative, so
h(cp o,y Will differ from f = hcp,,,, o, only on false negatives. Equation (89), however, guarantees
that for any positive instance of f, there is a positive instance of ¢ which is more similar to that instance
than is d,cy. Since equation (85) indicates that the positive instance of ¢ required by (89) will indeed be
an exemplar of the case-base (as long as there is at least one description satisfying f), then it is clear
that no positive instance of f will be misclassified by h Bl 0w, ) Hence equation (80) is contradicted
and we infer that (d,.q,0) must be in C'B,,,,. Hence: '

VdeDy-
(t(d) =0AVd e Dy - f(d) =1 — 3d" e Dy - t(d") = 1 A ow, (d', d) < s, (d',d")]) = (d,0) € C Brmae
(90)

Thus equations (84), (85), (86), (87) and (90) are precisely the definition of CB; ), and CBpar =
CB(f,t) I:l

Example 5.6 Is the function wyus + ujusus + ususuy CB2-representable with respect to the
target concept ujususus on the space Dy ?7

Let f be the function represented by wius + ujusus + ususus and ¢ be the function represented by
ujuzuzug. From definition 5.4, CB ) contains positive exemplars for precisely those descriptions
which are positive instances of ¢. Hence there is a single positive exemplar (1111,1). Also, there is
a negative exemplar for every description which is less similar to any positive instance of f than the
positive instance of ¢t. Consider those descriptions which satisfy the disjunct wjus, namely 1111, 1110,
1101 and 1100. For each such disjunct, it is only necessary to consider the minimal true vector (1100),
since any description which is less similar to 1100 than 1100 is to the positive exemplar 1111 will also
be sufficiently dissimilar to any of the other descriptions satisfying wjus. Therefore the similarity of
any negative exemplar in C'B(y ;) to the description 1100 must be < %, which is equivalent to requiring
a similarity of at least % to 0011 which is the complement of the minimal true vector 1100. Hence,
considering the other two disjuncts in the same way, the negative exemplars in C'B(y ;) are precisely
those descriptions d,,., satisfying:

Y(dneg,0) € CB - o1 (dpeg,0011) > % (91)
2

V(dneg,0) ¢ CB - 017 (dneg, 0100) > (92)
2

V(dneg,0) € OB - 041 (dneg, 1000) > 7 (93)

(Note that o5, = oy for a ‘fully defined’ target concept such as t = ujususus.) Thus CBy, ) contains
the positive exemplar (1111, 1) and the negative exemplars (0001, 0) and (0010, 0).

Proposition 5.5 indicates that if f is C'B2-representable with respect to ¢ at all, then hicp,, ,, on) = f-

The boolean representation of the function represented by (CB ), o) is:

A, (1111,0001).A,,, (1111,0010)

where, as in Example 3.4:

U, U,
Aoy (o dneg) = \AU € (Us,. \ U, )4 = {M

1
A
Hence:

h<CB(f,t)7f7H>
(uru2 + urus + usus) (Ui ue + ity + Ustig)
= ULU2 T UIU2U4 + U1 U2U4 + U U2U3 + U UUL + UL U2U3 UL + UL U2U4 + U U2UZU4 + U2U3UY

= UIU2 + UIU3U4 + U2U3U4
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Hence the function f = ujus + ujusug + usuguy is C B2-representable with respect to t = ujususuy.
a

Example 5.7 Is the function ujus +ujus +ujus CB2-representable with respect to the target
concept ujusuzuys on the space Dy 7

Repeating the previous argument, let f be the function represented by wius + uius + uius and let ¢
be the target concept uiuzuzus. Then the canonical case-base C'B(y) contains the positive exemplar
(1111, 1) and those negative exemplars satisfying:

V(dneg,0) € CB - 17 (dpog, 0011) > Z (94)
V(dneg,0) € OB - 17 (dpeg, 0101) > Z (95)
V(dneg,0) € OB - 57 (dpeg, 0110) > Z (96)

So CBys1) = {(1111,1),(0111,0)} and h<CB(f_t)7UH> = A,,(1111,0111) = uwy. Hence ujus + ujug +
uyuy is not C' B2-representable with respect to the target concept ujususuy. O

Finally, as noted above, these canonical representations have the property that given two functions
fyfleH; st. f' generalises f, then the canonical case-base for f’ will be a subset of the canonical
case-base for f.

Proposition 5.8 Given a function fe By that is CB2-representable with respect to a target concept
te My, then any function f'e By which is a generalisation of f i.e.

VdeDy - f(d)=1— f'(d) =1

and is CB2-representable w.r.t. t, will be represented by a canonical case-base C' By ) representing f
will be a subset of CBy ).
CBs0) € CB(r)

Proof: Given f, f'e By where f' generalises f (Vde Dy - f(d) = 1 = f'(d) = 1), then CBsy ACBy,
will only contain some negative exemplars for ¢ which are present in C' B ) but not in CBys ;). This is
clear from the definition of the canonical case-base (Definition 5.4); adding extra positive instances to
the represented function clearly requires the removal of negative instances from the canonical case-base.
O

Characterisation of C' B2-representable functions

Finally, it has been possible to give some necessary conditions for functions that are C'B2-representable
with respect to some target concept, although a necessary and sufficient characterisation has proved
elusive. The results to be presented are:

e All functions that are C'B2-representable can also be represented by boolean expressions in DNF
where all disjuncts are subsumed by the monomial expression for the target concept.

e Also, such a boolean expression for a C'B2-representable function will contain no pairs of disjuncts
that are disjoint, having no literals in common.

The first claim is given in Proposition 5.12, the second in Proposition 5.15 below. Proposition
5.12 depends on the results of Propositions 5.10 and 5.11, while Proposition 5.15 builds on 5.13 and
5.14. The expression of these results also depends on some notions of minimal and irreducible boolean
representations of functions which are stated immediately below. These are reproduced from [Mur71],
but equivalent statements should be found in any work on switching theory.
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Definition 5.5 [Mur71, Defn 2.1.8] If there exists a disjunctive form for a function f € By such that the
literal w; does not appear in any term of this form, then f is said to be positive in u;, u; is a positive
variable of f and the disjunctive form is said to be positive in u;. Conversely, if a disjunctive form for
a function f e By contains no literal u;, then f is said to be negative in u;, u; is a negative variable
of f and the disjunctive form is said to be negative in u;.

(Note that f is both positive and negative in a variable u; if neither u; nor w; appear in a particular
disjunctive form for f, or the value of f is otherwise independent of w;.)

Definition 5.6 [Mur71, Defn 2.1.8] A function that is positive in all variables is a positive function.
A function that is negative in all variables is a negative function.

Definition 5.7 [Mur71, Defn 2.1.8] If f or a disjunctive form representing f is either posilive or
negative in a variable u;, then f is said to be unate in u;. A function (or a disjunctive form) which is
unate in all variables is called a unate function (or a unate disjunctive form,).

Theorem 5.9 [Mur71, Thm 2.1.6] A unate function f has exactly one irreducible disjunctive form.
Furthermore, the form is unate and consists of all prime implicants of the function.

In what follows, the functions that are C B2-representable with respect to some target concept t e My
are characterised in terms of properties of the minimal DNF representation of the function required by
Theorem 5.9. When discussing the boolean representation of a function fe By, it is this irreducible
expression that is intended.

The first result necessary for the proof of Proposition 5.12 simply restates the result of Proposition 3.5
in the case of the weighted similarity measure o,. This is given without proof because of its similarity
to the earlier result.

Proposition 5.10 Consider a case-base C'B extensible to some te My 1 and a point de Dn which is a
positive instance of h<Cvifmt>' Any positive exemplar (di"7 1) e CB will be mazimally similar according
to o, w.r.t. all other exemplars in CB:

Y(d',n)eCB - 05, (d,d) > oz, (d,d')

Then, any instance which lies on a shortest path (reckoned only with respect to bits of the representation
relevant to t) through the example space between d and df, i-e. any point d* e Dy s.t.

VI<i <N ((we)i > 0A(d)i # (df)i) = (d)i # (df )i

is also a positive instance of hicp o ):

wi

hicB,omy(d) =1

2Py

Since all positive exemplars in the case-base are equivalent for the purposes of classification due to
the weighting of oy, , this result indicates that all functions that are C'B2-representable can be expressed
as a sum of terms where each term is subsumed by the monomial target expression; this is the result
expressed in Proposition 5.12. Proposition 5.11 serves as a lemma in the proof of Proposition 5.12.

Definition 5.8 A function f, e By agrees with a function fye By iff f1 is positive on any variable u;
on which fs is positive and f, is negative on any variable u; on which fs is negative.

Proposition 5.11 Given a function te My and a function fe By, then f will agree with t, provided
the following condition holds. Let de Dy be a positive instance of f. Let dT be the ‘mazimal true vector’
for t, i.e. the vector which has value 1 at every bit except where the monomial expression for t contains
a negative literal ;. Then any vector d' on a direct path from d to dT, i.e. any d' e Dy s.t. d' agrees
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with dt wherever d agrees with d', is also a positive instance of f. That is, a function f agrees with t
provided that:

VdeDy - f(d)=1—=Vd eDy-V1<i<N-(d);=(d"); = (d);=(d")]— f(d)=1
where dt is the mazimal true vector satisfying t.
Proof: For any positive instance de Dy s.t. f(d) = 1 assume that there is a monomial expression U s.t.:
1. d is a positive instance of hy
2. all other positive instances of hy are positive instances of f
3. hy agrees with ¢

Consider the DNF formula which is the disjunction of such U over all positive instances of f. For a
positive instance of f, there will be at least one disjunct which is true on that instance, so that the whole
expression will be true on all that instance. Equally for a negative instance of f, none of the disjuncts
U will be true, making the whole expression false. This disjunction is clearly an expression for f, and
additionally the expression will contain no negative literal @; if no such literal appears in the monomial
expression for ¢, and will contain no positive literal if no such literal appears in the monomial expression
for ¢, since this will be true of each individual disjunct; f in this case agrees with ¢.

Thus to show that a function fe By agrees with te My, it will be sufficient to show that for any
positive instance of f, there is a monomial U satisfying the three conditions above. Assume therefore
that the stated precondition holds for some de Dy where f(d) = 1.

VdeDy - f(d)=1—=VYd eDy-[V1<i<N-(d); = (d7)i — (d); = (d)] = f(d)=1  (97)

where dT is the maximal true vector satisfying ¢ as above.
Let T be the monomial expression representing the target concept ¢t. Consider the monomial U C T’
s.t. a literal from T appears in U iff d and d* agree on the corresponding bit of the representation:

VI<i<N-u;eU <« (u;eT A(d); =1) (98)
V1<i<N-GeU « (@eT A(d); = 0) (99)

Clearly hy(d) = 1, since u;eU — (d); = 1 and u;eU — (d); = 0; the first condition is satisfied
immediately. Equally, u; e U — u; €T and u; eU — u; € T. Thus hy clearly agrees with ¢ = hr according
to definition 5.8, satisfying the third condition also.

It only remains to show that all other positive instances of hy, d' e Dy s.t. hy(d’) = 1 are also
positive instances of f. Assume therefore that some description d' e Dy is a positive instance of hy.
Consider the description d” s.t. d’ and d’' agree on those bits which irrelevant to the target concept
t =hr ({u1,;} NT = ) and d” & d agree on all bits which are relevant to t. So for irrelevant bits we
have (d"); = (d'); and:

Vi<i{<N- {ul,ﬂi} NT=0 — (d”)i = (d—i_)Z — (dl)l = (d+)l (100)

Consider also that d’ is a positive instance of hy, as is d. So d' and d agree on any bit of the
representation constrained by U; {u;,@;} NU # @ — (d'); = (d);. Since U corresponds to precisely
those bits of the representation which are relevant to the definition of the target concept and on which
d and d* agree, for any bit of the representation relevant to t, (d); = (d*); — (d'); = (d*);. But since
d" and d agree on all bits constrained by the target monomial U, then also:

V1 < ) < N - {ul,ﬂi} nT 7& 0 — (d”)i = (dJr)Z — (d’)l = (dJr)l (101)

So for any bit of the representation, d’ must agree with d* whenever d” and dt agree. Since the
assumed precondition (97) also applies to d”, then f(d') =1, so that hy(d') =1 — f(d') = 1 as required
in the second condition. O
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Proposition 5.12 All functions f e Hy, i.e. those functions fe By which are CB2-representable with
respect to a target concept t € My, are unate functions, and further, the represented function f will always
agree with the target concept t according to definition 5.8.

Proof: Take a function f with a case-based representation (C'B, oy, ) derived from a target te My. For a
proof by contradiction, we must assume either that f is not unate, or that ¢ is positive in some variable
in which f is not, or that ¢ is negative in some variable and f is not.

Suppose f is not unate. Then there is some variable u; s.t. for all forms of the function f both w;
and @; appear in the expression. Thus whether ¢ is positive or negative in that variable, f will be neither
positive nor negative. Hence there are two cases to consider, one where ¢ is positive in some variable
but f is not, and one where t is negative in some variable but f is not; if f is not unate in some variable
then one or other of these conditions will be implied.

In the case where ¢ is positive in some variable but f is not (i.e. the monomial expression for ¢ does
not contain the literal u;, but u; appears in all boolean expressions for f) then Proposition 5.11 indicates
that there must be a positive instance d of f s.t. there is a description d’ lying on a direct path between
d and the description d™ which is the maximum true vector for ¢, and d' is a negative instance of f.

JdeDy - f(d)=1A3d ¢eDy-[V1<i < N-(d); = (d")i = (d); = (d)JAf(d)=0 (102)

Now since this d is a positive instance of f, in the case-based representation (C'B,ow,) there must
be a positive exemplar (dpos, 1) € CB where d,,s is maximally similar to d with respect to the rest of the
case-base. Since this is a positive exemplar, then ¢(d,,s) = 1 and hence dp,s must agree with the maximal
true vector dT on all bits of the representation relevant to t. So any relevant bit of the representation
that d and dp,s agree on, d’' and d,,s will also agree on (equation (102)). Thus d’ and d,, will disagree
on a relevant bit of the representation only if d and d,,s also disagree. Hence by proposition 5.10 we
have

hcBom ) (d) =1 (103)

I

for any d’ € Dy satisfying V1 < i < N - (d); = (d"); = (d"); = (d¥);, contradicting equation (102).

The argument may be repeated in the case where ¢ is negative in some variable and f is not. Hence
by contradiction in each case, it is concluded that f must be unate and that f agrees with the target
concept t according to definition 5.8. O

Proposition 5.12 shows that all C'B2-representable functions are unate and must agree with their
target concept. That is, a positive (or negated) literal can appear in the irreducible disjunctive form of
f only if the same positive (or negated) literal appears in the monomial expression of the target concept
t. The corollary of this is that each term of the irreducible disjunctive form of f must be subsumed by
the expression for the target concept, as stated above.

The second necessary property of C B2-representable functions is that no disjunctive form of the
function may contain disjoint disjuncts. The argument proceeds by showing that no C B2-representable
function can represent a function which has two positive instances which are maximally separate in the
example space oy, (d;,ds) = 0 (Proposition 5.13). On the other hand, a function represented by an
expression containing disjoint disjuncts implies precisely this condition (Proposition 5.14) so that it is
concluded that no such function is C'B2-representable (Proposition 5.15).

Proposition 5.13 For all values 1 < k < N, for any target concept t e My i, then there is no function
that is C B2-representable with respect to t (except the all-1 function £ ) that will classify positively two
instances d,d' € Dy which are ‘opposite’ in the example space (i.e. are as dissimilar as possible and have
zero similarity).

VI<k<N -VteMyy VfeH, f# f¥ >
Vd1,d2€DN : [Jﬁi(dlde) =0— (f(dl) = 0\/f(d2) = 0)]
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Proof: Take some case-base C'B extensible to a target concept ¢ e My ;. which contains at least one neg-
ative exemplar, and consider two descriptions d;,ds € Dy . Let the similarity of oy denote the similarity
of d; to the positive instances of the target concept, similarly .

Vde Dy t(d) =1 O’Ut(d,d1) =01
VdeDy - t(d) =1 — o7, (d,d2) = 0

Assume that o, (d1,d2) = 0; this will be the case iff d; and d» disagree on all relevant bits (those
with non-zero weighting in w;). Hence a description d agrees with d; on some relevant bit ¢ iff d disagrees
with dy on that bit. If 4; is the number of relevant bits on which d and d; differ, > is the number on
which d and d, differ, then we have §; + 6> = k, 1 = % + % and

Vde Dy - 0w, (d7 dl) + 0w, (d7 d2) =1 (104)

Thus immediately o1 + 02 = 1 since oz, (dpos, d1) + 0w, (dpos, d2) = 1 for any positive instance dpos
of the target concept t. Take then some point de Dy such that oy, (d,d1) < 1. Since equation (104)
also applies to this instance d we have:

oz, (d,di) < o1 (105)
0w, (d7 dl) + 0w, (dv d2) =1 (106)
o1 +oy=1 (107)

giving 1 — o3 > 1 — 0g,(d, dz2), and hence o, (d,dz) > o02. Thus it has been shown oy, (d,d;) < 01 —
0w, (d,d2) > o3 which in turn implies o, (d,dz) > 02. Thus

Vde Dy - 0w, (d7 dl) > 01 Voyg, (d, dg) > 09 (108)

Since o; is the similarity of the description d; to any positive instance of the target concept, then
this requires that at any possible negative exemplar in the case-base will be at least as close to one of
dy or do as any possible positive exemplar is. Thus d; and d> cannot both be positive instances of the
represented function unless the case-base contains no negative exemplars, in which case the function
represented will be either all-1 or all-0. O

Proposition 5.14 For any unate function fe By there are two descriptions di,d2e Dy s.t. f(di) =
f(ds) = 1 and in addition oy (di,ds) = 0, iff the unique irreducible disjunctive form for f contains a
pair of disjuncts that are disjoint i.e. which have no literal u; or w; in common.

Proof: 1) Only if. For some unate function fe By assume a pair of positive instances of f, d; and d»,
such that:
oy (dl s d2) = 0

Let @ be the unique, irreducible disjunctive form representing f, and let II be the union over all
the literals appearing in ®. Let dt be the description in Dy which has value 1 on all bits ¢ of the
representation s.t. w; €I, 0 on all bits ¢ s.t. w; eIl and value 1 if {u;,w;} NII = @. Note that such a
description can only be defined for a unate function f; otherwise Il will in general contain both u; and
u; for some bit 7. Let U; be the most specific monomial which includes both d* and d; and U, be the
most specific monomial including d* and d». Since d; and d» agree on no bit of the representation, then
U; and U, must be disjoint.

Now the set of positive instances of the function represented by either U;, ie{1,2} will be a subset
of the positive instances of f, demonstrated as follows. Assume that there is an example d which is a
positive instance of hy, so that V1 < j < N-(d;); = (d7); — (d); = (d");, or any bit on which d; agrees
with dT, then also d agrees with d*. By the contrapositive any bit of the representation on which d
disagrees with dT, d; & dt will also disagree:

V1<) <N-(d); # (dF); = (di); # (d7); (109)
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Assume also that d is a negative instance of f. Hence for all of the disjuncts U/ in ®, h(d) = 0. Now
if hirs (d) = 0, then there must be some literal w; or @; in Uy s.t. (u;eUp A(d); =0)V (w;eUpA(d); = 1).
But, by definition, this literal would appear in the union of literals IT which defines d* so that (u; e Uy —
(dT)i =1) A (w;eUp = (d7); = 0). d will disagree with d* on that bit, and from equation (109) then
d; also disagrees with d*. Hence any such disjunct U; must also be zero on d;. Thus d; would be a
negative instance of f, which is contradictory. Hence all positive instances of hy, will also be positive
instances of f. Hence there must be a disjunct in ® which includes Uy, and one which includes Us,. Since
these can only be more general than U; and Us, then if Uy and Us are disjoint, then the disjuncts in the
formula must also be disjoint.

2) If. Assume that for a unate function f e By, then ®, the unique irreducible disjunctive form of f,
contains a pair of disjoint disjuncts. Let U; and Us be this pair of disjoint disjuncts in ®, and consider
the descriptions di,ds e Dy defined as follows. For any bit i s.t. u;eU; or w; eUs let (di); = 1 and
(d2); = 0. For any bit ¢ s.t. w; €Uy or u; eUs let (d1); = 0 and (d2); = 1. For all other bits let (dy); be 1
and let (d2); be 0. Clearly hy,(dy) =1 and hy,(d2) =1, so f(dy) = f(d2) =1, and in addition, d; and
dy differ on all bits of the representation, so oy (dy,d2) = 0. O

Proposition 5.15 C'B2-Representable Functions. For any N > 1 and functions fe By,te My, f
is C B2-representable with respect to t only if

1. f is a unate function, and

2. the unique, irreducible disjunctive form representing f contains no pair of disjuncts that are dis-
joint.

Proof: The first condition is stated in proposition 5.12. Assume that a function fe By has a case-based
representation (CB, o7, ) derived from some monomial ¢ e My as described above. Assume additionally
that C'B contains both positive and negative exemplars. (If not then the second condition follows
trivially). From proposition 5.13 then, there is no pair of examples which are ‘opposite’ according to o,
(0w, (d1,d2) = 0), but which are both positive instances of f = h<CB’aEf>. Since this is true for no pair
of examples s.t. og,(dy,ds) = 0, then it cannot be true for the speciall case of two descriptions which
differ on all bits of the representation (o (di,d2) = 0). Proposition 5.12 asserts that h<oB,o.m> must be
a unate function so from proposition 5.14 it follows that the irreducible disjunctive form of f contains
no pair of disjuncts U; and Us which are disjoint. O

5.2 Consistency of C'B2

In the previous section we have been able to map out some of the properties of the case-based represent-
ation for the special case of the weighted similarity measure in a little more detail than in the general
case of representations using og. Our aim remains the same, however: to use these results in charac-
terising the sample complexity of our learning ‘algorithm’ C'B2. The other preliminary, as in §4, is to
establish the consistency of C'B2 in order to apply the standard learning results for sample complexity
based on the cardinality and VC dimension of the hypothesis space. Since the weight vector w is defined
(Definition 5.2) only in terms of monomial target concepts, the results below only consider the case of
C = My; the resemblance between C'B2 and C'B1(o) means that the proof proceeds in a very similar
fashion to theorem 4.3 above.

Proposition 5.16 CB2 is a consistent learning algorithm for My .

Proof: For any target concept te My, the hypothesis output by CB2 on 3, a training sample for ¢, is
h<CB70m>, where CB = U1gigm(div b;) and o, is the weighted similarity measure defined in terms of
t (Definition 5.2). Dispensing with the trivial case of te My o (since hgy has value 1 on all de Dy and
thus Vde Dy - CB2(3)(d) = ¢(d) = 1 on all non-empty training samples 3), we assume below that w;
has at least one non-zero bit. Consider the positive and negative examples in § separately. First take
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some positive example d; s.t. b; = 1. Since a bit (w;); of the weight vector is > 0 iff the j-th bit of
the representation is referred to in the monomial expression defining ¢, and since any negative exemplar
must disagree with d; on at least one of these defining bits, then clearly:

V(dneg, 0) eCB - 0w, (dl, dneg) < 0w, (d“ dl)

Hence h<CB7[,m>(di) = 1, by equation (4). Secondly, consider negative examples from the sample, d; s.t.
b; = 0. Again, any positive exemplar (dp.s,1) e CB, must disagree with d; on at least one of the defining
bits and hence:

V(dpos, 1) € CB - o, (di, dpos) < 0w, (di,d;)
Hence a fortiori hcp,s. y(d;) = 0. Thus for any element of the sample C'B2(5)(d;) = b;. O

Corollary 5.17 CB2 is a consistent learning algorithm for My .

5.3 Empirical Investigation of C'B2

The experiments generating figure 4 were repeated in order to measure the learning behaviour of C B2
with respect to specific concept spaces. The aim, as before, was to investigate empirically the sample sizes
required for reliable hypotheses before addressing formally the question of sample complexity. Figure
5 shows results for 250 training samples for different members of Mg, 1 < k < 3, where irrelevant
features are weighted 0 and relevant attributes are weighted 1. The figure shows that C' B2 learns Mg 3
more quickly than Mg o, which is learnt more quickly than Ms 3. An accuracy of > 95% is reached on
average with a training sample of size 5 for Mg 1, while the size of training sample needed to reach the
same level for Mg 2 and Ms 3 is ~ 7 and ~ 10 respectively. This reverses the trend revealed in Figure 4,
which showed the learning behaviour of CB1 equipped with the unweighted feature count oz .
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The learning curves in Figure 5 are also a clear improvement over Figure 4; C' B2 is evidently, on
average, much more efficient with respect to sample complexity than CB1(cg). The extra ‘knowledge’
or information encoded in the weighted similarity measure in the hypotheses output by C B2 has a very
marked effect on the learning behaviour. A similar effect is demonstrated over a number of different

similarity measures in the learning of concepts defined on ordinal-valued attributes in work by Globig
& Wess [GW94].

5.4 Sample Complexity of CB2

Having addressed basic issues of representability and consistency for C'B2, and explored briefly the
average case behaviour by empirical testing, we can now focus on the primary issue of the sample
complexity of CB2. As before, the sample complexity will be explored by considering the effective
hypothesis space of C' B2 with respect to different classes of target concept. Fortunately, with respect to
the case-base part of the hypothesis representation, C'B2 will have exactly the same behaviour as any
CB1(0) in that a ‘collect all’ strategy is employed in constructing the case-base. Hence proposition 4.1
can be restated in the case of C'B2:

Proposition 5.18 A function f is a member of the hypothesis space of C B2 with respect to the concept
space C' C By if and only if there is some target concept ce C for which there is a case base CB C ¢ s.t.
hicB,ow y = [, where o, is defined with knowledge of the target concept as in definition 5.2.

VC C By -VfeBy  feHEP? & 3ceC-3CB Cc-hicp, ow) =1

As a result of this, the set of functions that might be output by C B2 on a training sample for some
concept t € My j is precisely the set of C'B2-representable functions Hy, and in analogy to equation (17),
the effective hypothesis space of C B2 with respect to some concept space C' can be defined:

HEP? = | ] H, (110)
teC

where H; is defined as in Definition 5.3.

Hypothesis Space of C B2 increases with k

Figure 4 showed the empirically observed learning curve for C B1(oy) with respect to target concepts in
the space My ;. The graph showed how for such target concepts, the average case ‘sample complexity’ of
CB1(o) decreases as k increases. Figure 5 on the other hand shows the opposite trend in the learning
behaviour of CB2 with respect to targets in My ; sample complexity increases with k. We consider in
this section how this might be reflected in changes to the structure of the hypothesis space of C B2 as
compared to CBl(cy). Note from the discussions on representation in section 5.1 that the functions
in Hﬁfi can depend only on variables relevant to the target concept. Thus, in place of Proposition
4.17, it is straightforward to show that V1 < k < N - HOB2 NMy = U0<k,<,C Mp 5 only those
monomial functions which are generalisations of target concepts in the concept space are representable
as hypotheses. More significantly for the learning behaviour, where it was noted above (p. 24) that in

general for k < k', H CB‘l(aH) Z HoBlk(aH) nd HCBl(aH) 2 HCBl(UH) the hypothesis spaces of CB2 do

include each other as k increases. It can be shown HCB2 C HCBQk for k < k'. In the case of HC¢BWo#),

H Cfl(gH ) cannot include H CBIA(UH ) for a larger k' since there are functions whose representation depends

on positive exemplars for a target ¢ e M, which cannot be included in a case-base extensible to a more
specific target concept t' € My . However, in the case of C'B2, the zero weightings introduced into the
similarity measure mean that any positive exemplars in the case-base are equivalent for the purposes of
classification (see p. 33) so that any ‘problematic’ positive exemplars that could not be included in the
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case-base for some more specific target concept can be replaced by appropriate positive instances of the
new target concept without changing the represented function. This is the intuition behind the result
stated in Proposition 5.20, with Proposition 5.19 as a lemma to that result.

Proposition 5.19 For any two case bases CB, CB' C (Dy x {0,1}), and any two weighted similar-
ity measures o and og defined in terms of vectors w,w' € {0, 1}, then the functions represented by
(CB,ow) and (CB',0w) are equivalent:

h¢B,omy = heBr o)

provided that 1) for any bit of the representation, W differs from W' only where W has value 0 on that bit
while W' has value 1, and in addition all descriptions d' such that (d',n) e CB' also all agree on that bit
(equation (111)), 2) for all exemplars (d,n) e CB there is some corresponding (d',n) e CB' s.t. d and d'
differ only where (w); # (w'); (and (w); = 0) (equation (112)), 3) and vice versa... for all exemplars
(d',n) e CB' there is some corresponding (d,n) e CB s.t. d and d’ differ only where (w); # (w'); (equation

(113)).

V1<i<N-(w) @) = [(w) =0ATbe{0,1}-V(d',n) e OB - (d'); = ] (111)
V(d,n)eCB-3(d',n)eCB" Y1 <i< N - (w); = (w"); = (d); = (d); (112)
V(d',n)eCB -3(d,n)eCB-V1<i< N-(w) = () = (d); = (d)s (113)

Proof: Assume that the conditions stated above hold. We need to show h(cp,oy = h(cBr,omy) OF
Vde Dy - hicBomy(d) = 1 < hopoy(d) = 1. Hence (equation (4)) proof will be established by
showing:

Vde Dy - (Adpos, 1) € CB - V(dneg,0) € CB - o (dy dpos) > 0(d, dney)) <
3(d,,.,1)eCB" -¥(d,.,,0)eCB - o (d,d., ) > oz (d,d,.,))

pos» nego » Ypos » Yneg

a) Only If Assume first that an instance d is classified positively by hcp ,—y i.e. I(dpos,1)eCB -
V(dneg,0) € CB - o5(d, dpos) > 0w (d, dneg). Let di be the descriptor of a positive exemplar fulfilling this
proposition so that:

(di,1)eCB (114)
V(dneg,0) e CB - o(d,dy) > oz(d, dpeg) (115)

Let d} be the descriptor of a positive exemplar in C'B’ satisfying equation (112) with respect to d;.
Hence:

(d,1)eCB’ (116)

Consider a negative exemplar (d5,0)e CB’. Let d be the descriptor of a negative exemplar in CB
satisfying equation (113) with respect to d. From equation (113) we have:

(d2,0)eCB (118)

From equation (111) we infer both that on those bits where w and w’ disagree, we have (w); = 0 and
(w'); = 1 and also that any bits which are non-zero in w will also be non-zero in w'. Additionally, d
and dj will agree with each other on these non-zero bits iff d and d; agree (equation (117)), ditto d,
dy and d}, (equation (119)). Therefore if n is the number of bits s.t. (w); = 1, the number of bits on
which @’ is non-zero and on which d agrees with d} is (n - o5(d,d1) + 21), where x; is the number of
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bits s.t. (w); =0, (w'); =1 and (d); = (d});. Similarly the number of bits on which @’ is non-zero and
on which d agrees with d} is (n - o5 (d,d2) + x2), where x5 is defined by analogy to z;. But since in
addition, on any bits where W and w’ differ then all exemplars in CB’ will agree on that bit (equation
(111)), #1 = x3. Therefore oz(d,d;) > oz(d,d2) < oz (d,dy) > og(d,dy). Equation (115) requires
ow(d,dy) > oz(d,dz) and hence oz (d,d}) > oz (d,d}). Since d} is the description of any negative
exemplar in CB’, we have shown:

¥(dy,0) e OB - o (d, d}) > oy (d, ) (120)

Thus, any instance which is classified positively by the function represented by (CB, o) will also
be classified positively by the function represented by (CB' oz/). b) If. Assume instead that an
instance d is classified positively by hcpr o,y i-e. Idyps,1) e CB" - V(d,,.,0)eCB" - o5 (d, dpy,s) >
oz (d,d,.,). In analogy to above, there is therefore some positive exemplar in CB’ with description

s Yneg
dy s.t. V(d,,,0)eCB" - o5 (d,d}) > o (d,d,.,) and there is an exemplar (d, 1) e C'B which disagrees

with d} onlyg where w has value 0 and w’ has value 1. Consider a negative exemplar (ds,0)e CB;
again (equation (112)), there is a negative exemplar (dj,0)e C'B' whose description dj only disagrees
with dy where W and @’ differ. As above, oz(d,d1) > oz(d,d2) < o (d,d}) > o (d,d}), since all
exemplars (d',n)eCB' agree on the bits which are not counted due to zero weightings in w. Hence
V(dleq,0)€eCB' - o (d,d}) > oz (d,d),,,) = Y(dneg,0)eCB - oi(d,dv) > ow(d,dpey), so we conclude

neg’ » Yneg
that d is a positive instance of the function represented by (CB, o). O

Proposition 5.20 The effective hypothesis space Hf,[]ii of C B2 with respect to the concept space My

includes the hypothesis space HB> with respect to My jr for any N > k' > k.

N, k!
CB2 CB2
VN>1-VI<k<N-VE<K <N-Hy'o C Hyo
Proof: Appealing to proposition 5.18 it is sufficient to show that for any values 1 < k < k' < N:

VfEBN'
(atEMN’k -dCB g t- h<CByfth> = f) — (atIGMN’kr ECB’ g t’ . h(CB’ ow ) = f) (].2].)

2O
¢!

Assume therefore there is some function fe By which has a case-based representation (CB,o0,) s.t.
CB C t and ¢ is a monomial function in My . Let U be the monomial representation of ¢ and let U’ be
any monomial representation s.t. U C U’, |U'| = k' and the set difference U’ \ U contains only negative
literals.

Note also that, following our definition of monomial representations, we assume that neither U nor
U’ contains a pair of contradictory literals u; and @w;. Hence u;eU — u;eU’, and u; e U — w; £U’.
Since also w; e U — w; ¢U'\ U, we have:

VlSZSN{Ul,ﬂz}r\IU#Q—)Ez y./UI\U (122)
Consider the following case-base C'B’ defined in terms of CB, U and U’.

CB' ={(d',n)e(Dn x {0,1})]
(VI<i<N-we(U'\U)—= (d);=0)A
I(d,n)eCB-(V1<i<N-(d); # (d); = u; e (U \U))} (123)
That is, C'B’ contains the exemplars (d',n)e(Dy x {0,1}) s.t. there is an exemplar (d,n) in CB

whose description d agrees with d' on all bits unless the bit is constrained by a literal that appears in U’
but not in U (w; eU' \ U) and, in addition, any such bit has the value 0 in the description d’ ((d'); = 0).
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Clearly t' = hyy is a function in My . In order to show that C'B’ satisfies equation (121), we must
therefore show that CB’ C ¢’ and that hicprom )y =f= h<oB,o.E‘>. a) CB' Ct'. i.e. It must be shown

that (d’,n)e CB' — t'(d') = n. For any (d',n) e CB' equation (123) requires:

V(d,n)eCB V1<i< N -Te(U\U) > (d); =0 (124)

V(d',n)eCB"-3(d,n)eCB-V1<i<N-(d); #(d); > uie(U"\U) (125)

Hence for a negative exemplar (d,.,,0) e CB’, let d,.c, be the description of a corresponding negative

exemplar in CB. Since CB C t, then clearly ¢(d,.y) = 0, and since U is the monomial representation
for ¢, then:

Jd1<i<N- (UiGU A (dneg)i = 0) \Y (ﬂiGU A (dneg)i = ].) (126)

Since U’ D U and hence any literal appearing in U will also appear in U’, and since also for any

value of ¢ satisfying equation (126) then uw; ¢U’\ U (equation (122)) and hence by equation (125)
dneg and d,,., will agree on that bit ((dney)i = (d},c,)i). Thus there is a bit of d,., contradicting U’,

neg g
<IN (uieU'A(dye,)i =0) V (Wi eU' A (d,,,): = 1), and:
B (dey) =0 (127)

Similarly, for a positive exemplar (d,,.,

CB, and dp,s is a positive instance of hy:

1) e CB’, there is a corresponding positive exemplar (dpos, 1) €

Vi<i<N- (UiGU — (dpos)i = ].) A (ﬂiGU — (dpos)i = 0) (128)

As above, equations (122) & (125) require that for any bit constrained by a literal in U, then dp,s and
d;ms agree on those bits. In addition, for any additional negative literals appearing in U’ \ U, equation
(124) also requires that (d),,;); = 0, and so for any bit of the representation, (u;eU" — (d,,)

DA (@ eU — (d,.):; =0). Hence:

pos

hye(d.,.) = 1 (129)

pos
b) hicpio— vy = hic Bom,)* This can be shown by establishing that the preconditions of proposition
¢ wi

5.19 hold with respect to the case-bases CB and CB’, and the weight vectors w; and wy. Assume
(wy); # (wy);. Since U C U', any literal in U also appears in U’, and {u;, @, } NU # @ — (wy); = (wy);
by equation (64). Hence neither literal can be in U, and (w;); = 0. Additionally, equation (64) indicates
that given (w¢); # (wy ), either u; e U'AU or w; e U' AU. From the definition of U’, the only possibility
is w; e U’ \ U, and equation (124) requires (d'); = 0 for any (d',n) e CB'. Hence (111).

Assume (d,n) e CB. Define the descriptor d’ s.t.

(d’)l = 0 Zf ﬂiEU’\U
(d); = (d); otherwise

Clearly, d' is a descriptor which disagrees with d only on bits ¢ s.t. @; e U’"\ U. Hence by equation (123),
(d',n)eCB'. Assume for an index i that (w;); = (wy);; then by equation (64), {u;,w;} NU = 0 +
{u;,w;} NU" = @ and {u;,w;} NU"\ U = ©; thus, specifically, w, ¢U’\ U and hence (d'); = (d);. Hence
(112).

Finally, take some (d’,n) e CB'. Equation (125) requires the existence of some (d,n) e CB s.t. (d); #
(d'); only if w; eU’ \ U. Assume then that (w;); = (wy);. As above, u; U’ \ U, giving (d); = (d');-
Hence (113).

Thus by proposition 5.19, h(CB’,o—Ei,) = h<Cvi7m>' O

Proposition 5.20 shows how the availability of knowledge about relevant and irrelevant features
‘collapses’ the hypothesis space of C'B2 so that many of the irrelevant hypotheses output by CBl(op)
are avoided entirely. For a fixed representation size, the size of the hypothesis space will increase
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monotonically with k as a direct corollary of Proposition 5.20. This gives an explanation of some kind
for the contrast between the learning curves of Figures 4 & 5. What the result does not highlight,
however, is the fact that, given the knowledge encoded in oy, , the learning behaviour of C B2 becomes
independent of the representation size N. This is shown in the results of the following section.

Sample complexity of C B2 is independent of Representation Size

One claim that is easily established is that the sample complexity of C'B2 increases with the number
of relevant attributes k, but is independent of the size of the representation V. This is easily done by

considering the ‘covering net’ technique applied to case-based learning algorithms by Albert and Aha
[AA9]].

Definition 5.9 e-Net for CB2. A set of instances D C X is an e-net for CB2 w.r.t a target concept
t iff, except for a set of exceplions X' occurring with probability < ¢ (X' C X s.t. uX' <€), for any
instance x € X there is an element of the net de D s.t. x© and d agree on all bits relevant to the target
concept. i.e. D is an e-net iff:

p{rxeX|VdeD - o5,(d,z) <1} < e

The more elaborate method of constructing a bound on the sample complexity shown in [AA91]
and [AKA91] is not necessary in the case of the finite example space Dy. In the current context, the
definition of a covering net is sufficient in itself to guarantee a good hypothesis, so a bound on the
sample complexity can be established without any further assumptions. Definition 5.9 is equivalent to
requiring that each equivalence class in the partition (Dy\ zw‘) (p. 33) is ‘hit’ by some exemplar in
the training sample, apart from exceptions occurring with sum total probability < e. Since all members
of each of these classes are equivalent for the purposes of classification, then this is clearly sufficient to
ensure correct classifications for the majority of the example space.

Proposition 5.21 If the elements contained in a sample Te X™, Bz = |J,<,.,,{zi}, are an e-net for
CB2 w.r.t a target concept t, then the error in the hypothesis output by CB2 on T; will be less than ¢.

e-net(Ez) — er, (CB2(T),t) <€
Proof: For some sample Te X™, assume that Fz = J,-,.,,{2i} is an e-net for C B2 w.r.t t. Hence:
plre X|Va' e Bz - o, (2", 2) < 1} < e (130)

Hence p{zeX|3z' € Bz - 05,(2',x) = 1} > 1 —e. Let the hypothesis output by C'B2 on T; be
h<CB7UEf>. Assume that for some example x € X, the element of the partition containing z is hit by a
training example from 7: 3z’ € Ex - oz, (2',x) = 1 for some zeX. By the definition of CB2, z'¢ Fz
implies (', t(2")) e CB. Hence:

A", t(z") e CB - o5, (2", 2) = 1 (131)

Note that oz, (2',2) =1 — t(x) = t(z'), since z and 2’ agree on all relevant bits defining the target
concept. Now assume t(z) = 0, so there must be a negative exemplar (z',0) e CB s.t. og,(¢',2) = 1,
and hence immediately V(dpos,1) € CB - (dneg,0) € OB - 05, (2, dpos) < 0, (2, dneg) and hicp, o )(x) =
t(z) = 0. Similarly, for any positive instance of ¢ s.t. ¢(z) = 1, then we have a positive exemplar
(2',1)eCB s.t. og,(¢',2) = 1. Additionally any negative exemplar will disagree with = on at least
one relevant bit, giving V(dney,0) e CB - 05, (2,2") = 1 > 05, (2, dneg). Hence hicp o) (z) = t(z) = 1.
Thus Vze X - (32’ € By - o5, (2/,2) = 1) = CB2(T)(z) = t(x). Hence p{zeX|3z' € By - o5, (z',2) =
1} < p{ze X|CB2(T)(z) = t(z)}. Thus, u{ze X|CB2(%;)(z) = t(z)} > 1 — € and er,(CB2(7;),t) =
u{ze X|CB2(z:)(x) # t(x)} <e. O

The probability of drawing an e-net in a training sample of a fixed size is calculated exactly as in
[AA9]].
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Proposition 5.22 c.f. [AA91, Lemma 2.1] [AKA91, Lemma 1] The probability of drawing a sample

me

which is not an e-net for CB2 wrt te My, is < 2k e ok

me

™ {T € X™|Exis not an e-net wrtt } < 2% . e 2F

Proof: Let G = (Dn\ ~o_ ) be the partition induced on Dy by the similarity measure o, s.t. G contains

2% regions of X and all descriptions within a ge G agree on the k relevant bits of the description. Let
G1 be the subset of G s.t. VgeGy - ng > 57 and G be the subset of G s.t. Vge Gy - pg < 57.

Now, if for some geG there is an example in the sample which ‘hits’ g, then Vzeg -1 < i <
m - og,(z,z;) = 1. Hence so long as there is an example in the sample which hits every ge Gy, the
probability of having an example z€ X s.t. V1 <i <m-og,(z,2;) <1lis <37 4 ng < 2k S =e
Thus the probability of drawing a sample which is not an e-net for CB2 wrt ¢ is no more than the
probability of drawing a sample Te X™ s.t. 3ge Gy -V1<i<m-x; ¢g.

Taking one specific g € G, the probability that no example in the sample is taken from g is < (1—5%)™,
and the probability that at least one h e G is not hit by the sample can be no more than |G1|-(1—5%)™.
Since |G1| < |G| = 2, the result follows immediately from the inequality (1 — z)® < e™2%. O

[V}
g

=

2

Hence:

Corollary 5.23 The sample complexity of CB2 with respect to a concept space My on k-literal
monomials is no more than % log, %k,

k 2k
mep2(My g, 6, €) < - log, 5

Proof: From proposition 5.21, e-net(Ez) — er,(CB2(T:),t) < €, and from proposition 5.22 u{T e X |Ez
is not an e-net wrt ¢ } < 28 . e 2% . Hence w{Z e X™er,(CB2(T;),t) < €} < p™{ZTe X™|E5 is not an
e-net wrt t } < 25 . e 2F | and given large enough m, we can have p™{Z e X™|er, (CB2(Z;),t) < €} < &
for any value ¢, given specifically by m > % log, % O

Hence it has been straightforward to establish an upper bound on the sample complexity of C'B2
which is independent of the size of the representation, increasing only as a function of €, § and k.
Corollary 5.23 is a poor bound, however, increasing as it does in k.2*. For a tighter bound, the following
section considers a better definition of a ‘covering net’, as used in the derivation of the sample complexity
results of Blumer et al [BEHWS89].

Upper bound on Sample Complexity of CB2

Definition 5.9, as used in the technique of Albert and Aha, requires the training sample to give an
exhaustive coverage of the example space in order to guarantee a good approximation to the target
concept. The neat, grid-like subdivision used by Albert and Aha has the disadvantage that it makes
no allowance for the particulars of the learning algorithm or concept class being studied, and, therefore,
many of the elements of the net are in fact redundant in learning the concept at hand. The general
upper bounds on sample complexity in the PAC framework ( i.e. those in terms of the VC dimension
[BEHW89, Thm 2.1] and the ‘Blumer bound’ [BEHW87, Lemma 2.1] [BEHW89, Thm 2.2] ), however,
use a different notion of ‘covering net’ to bound the size of training sample needed, defined in terms of
the effective hypothesis space of the learning algorithm being used. This depends on the notion of the
‘error regions’ of a learning algorithm. This is developed in the following statements, which differ from
the formulation of [BEHW89] and [KV94] only in that the set of error regions A(t) is defined in terms of
H,, the set of hypotheses that might be output on training samples for a specific target concept, instead
of the hypothesis space as a whole.
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Definition 5.10 Error Regions [KV9/, p.57]. The error regions A(t) of a target concept t with respect
to a hypothesis space H are the subsets of the example space on which a hypothesis in Hy C H, i.e. a
hypothesis in H that might be output on a training sample for t, will disagree with the target concept t.

A(t) = {h® C X|3he H, - h™ = {we X|h(x) # t(x)}}

Definition 5.11 e-Error Regions [KV9/, p.57]. The e-error regions A (t) of a target concept t with
respect to a hypothesis space H are the error regions in A(t) for which the probability that a random
example, drawn according to the fized probability distribution, would fall into that region, is at least .

Ac(t) = {reAd)|ur = €}

Definition 5.12 e-Transversal [BEHWS89, p.952] [KV94, p.58]. An e-transversal for a sel of error
regions A(t) is a set S C X s.t. for every error region r with sum probability at least €, there is some
element se S which is also in r.

VreA(t)-SNr#0Q

Proposition 5.24 [KV9/, p.58] Consider an hypothesis space H, a target concept t e By and a training
sample T s.t. the set of exemplars contained in T, Bz = J;<,,,{xi}, is an e-transversal for the error
regions of H w.r.t. t. For all consistent learning algorithms L wusing hypothesis space H, then the
hypothesis output by L on T, will have error < e.

consistent(L) A e-transversal(Ez) — er,(L(T:),t) < €

Proof: Suppose that the training sample contains some example z; s.t. x; e for some e-bad error region
reA(t). Then no hypothesis he H; s.t. hAt = r can be output since this would be inconsistent with
the example (z;,t(z;)). Hence, if the training sample contains an e-transversal for A(¢), then no e-bad
hypothesis can be output and er,(h,t) <e. O

Proposition 5.24 gives a much better motivation for defining a covering net. Rather than cover some
partition of the example space exhaustively, the e-transversal requires exemplars only where they will
specifically rule out some poor hypothesis. Hence definition 5.12 gives a sufficient condition over the
training sample for a consistent learning algorithm to output an hypothesis with bounded error which is
sensitive to the particular properties of the algorithm. To derive a bound on sample complexity, it is only
necessary in addition to bound the probability of drawing a training sample containing an e-transversal.
Proposition 5.25 applies this in the case of C'B2.

Proposition 5.25 The probability of drawing a sample Te X™ whose examples do not form an e-
transversal for the error regions of C B2 with respect to a target concept te My is < (|H¢| — 1)e™ ™.

p"{ZTe X" |Ez is not an e-transveral for error regions of CB2 w. r. t. te My} < (|He| —1).e”™

Proof: As in BEHWS87, Lemma 2.1], take a specific r € A(t); since ur > €, the probability of a randomly
drawn example not falling in r must be < (1 — ¢€), and the probability that no example in an m-sample
falls in 7 is < (1 — €)™. The event that some e-bad error region contains no example in the training
sample is the union of the events of each individual error region not being hit, so this probability is
< |Ac(?)]-(1 —€)™. The result then follows since |A.(¢)| < |A(t)|, the error regions of A(¢) are in one-to-
one correspondence with the functions in H;, and in general, (1 — z)® < e=**. The ‘—1’ appears since
we exclude the function ¢ e H; which has error 0. [

Corollary 5.26 The sample complezity of C B2 with respect to the concept space My . is no more than

(| H: =1
0

%logE ) for some te My .

([He = 1)

1
mCBQ(MN,k7676) S gloge (S
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Proof: The event er, (CB2(%T;,t) > € occurs only if T is not an e-transversal for the error regions of C'B2
with respect to a target concept te My . Hence the probability of drawing a training sample resulting
in an e-bad hypothesis is bound by (|H;| — 1).e=“" and p"{Ze X™|er,(CB2(T;),t) > €} < 6 provided
that § > (|H| — 1).e ™. Hence result, solving for m as usual. O

Hence an upper bound on the sample complexity of C B2 can be derived directly from the charac-
terisation of C'B2-representable functions presented above (§5.1). This is demonstrated in the following
subsection.

Counting |H;| for Upper Bound on Sample Complexity

Corollary 5.26 states an upper bound on the sample complexity of CB2 on the concept space My
in terms of |H,|, the cardinality of the set of C'B2-representable functions with respect to a target
concept te My, (equation (65)). Table 3 lists the functions that are C'B2-representable with respect
to target concepts defined in k-literals, 1 < k < 5. The table was generated by systematically testing
generalisations of representable formulae using the method of constructing and testing the canonical case-
base C' By, as indicated in Examples 5.6 and 5.7. Note that the property of ‘C' B2-representability’ will
be preserved under transformations which a) permute the variables of a boolean form of the function and
b) negate one or more of the variables. Those functions which are equivalent under permutation of the
variables are said to be P-equivalent and those which are equivalent under permutation and negation are
said to be N P-equivalent. For each N P-equivalence class of C'B2-representable functions, Table 3 lists
a representative function of the class, the size of the equivalence class and the size of the P-equivalence
class for that representative function. The table is divided horizontally according to the value of k,
the number of variables defining the functions. In counting the P- and N P-equivalence classes, only
permutations and negations of the k defining variables are considered.

Table 4 collates the data from Table 3 to indicate the number of C B2-representable functions as a
function of the size of the target concept k. The quantity g(k) is the number of functions dependent on
exactly k bits of the representation that are C B2-representable with respect to a fixed target concept
te My . This quantity is the sum of the sizes of the P-equivalence classes for a particular value of £
listed in Table 3. Taking some function te€ M, then H; will only contain functions defined by the &

bits defining the target concept t. For any such function defined in &’ < k variables, there are ( Z, )
ways of choosing k' from the k bits defining ¢. Hence:

=Y (5 )a) (132)

k'=0

Table 4 also lists |H f/[ff |, which is the number of functions that are C'B2-representable with respect

to any target concept defined on k out of k literals (all negations included). Clearly |H f/[f”ﬂ is a sum
over the sizes of the N P-equivalence classes in Table 3, or alternatively:

k
S = S0 () o) (133)

k'=0

The final column in Table 4 also lists for comparison the total number of functions definable on a
k-dimensional example space, |B| = 22",

Hence combining the result of Corollary 5.26 with the values of |H;| listed in Table 4, the following
upper bounds on sample complexity may be stated:

1 2 1 1 1
VN Z 1 'mCB2(MN’1,(5,6) S —IOge g < -+ —loge 5 (134)
€ € €
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Representative Function

No. P-equivalent

No. NP-equivalent

functions functions

T 1 1
Y 1 1
U1 1 2
U1U 1 4
Ui1U2U3 1 8
UpU2 + UTUS 3 24
UL U2 + UL U3 + UsU3 1 8
UL UUS U4 1 16
UL U2 + U U3UL 12 192
ULU2U3 + UL U2 U4 6 96
ULU2 + UL U3UL + U2 U3U4 6 96
UL U2U3 + U1U2UL + UL U U4 4 64
ULU2U3 + U U2Ug + UTU3U4 + UsUI U4 1 16
U1 U2U3U4LUS 1 32
ULU2 + UTUIULUS 20 640
U UUZ + U UL U5 15 480
U UU3 + U ULU4 U5 30 960
U UaU3U4 + U U2U3 U5 10 320
ULU2 + UL UULUS + U U3U4LUS 10 320
UL U2U3 + U1U2UL + UL U2 U5 10 320
UL U2U3 + U1U2UL + UL U U 60 1920
UL UU3 + UU2U4 + UL USU4US 60 1920
U U2U3 + UL ULUS + U U3 U4US 15 480
U UaU3z + U U2U4 U5 + U U3U4US 30 960
UL U2UZU4 + U U2 UU5 + U U2U4Us5 10 320
ULU2U3 + ULU2Ug + U U U5 + UL U U4 60 1920
U U2U3 + U UU4 + U USU5 + UL UL US 15 480
UU2U3 + U UU4 + U U2U5 + UL U3ULUS 20 640
UL UU3 + U1 U2U4 + ULUZU5 + UaU3ULUS 60 1920
ULU2UZ + U U2 U4 + UTUSULU5 + U U3U4US 30 960
ULU2UZ + U U2 U4US + U U3ULUS + U2 U3ULUS 10 320
ULU2U3 U4 + U U2USUS + UL U2U4 U5 + UL U3ULUS 5 160
UL UUZ + UTU2U4 + UL U U5 + U UIU4 + U UIU5 30 960
UL UUZ + U U2U4 + UL U U5 + UL U3U4 + UUIUL 30 960
ULU2UZ + UL U2U4 + UL U3U5 + UTU4U5 + UsU3ULUS 15 480
ULU2UZ + UL U2U4 + U U2 U5 + UTUIU4U5 + UU3U4US 10 320
UL U2U3U4L + U U2U3U5 + UTUIUAUS + UL U2ULU5+

U U3U4US 1 32
U UU3 + UIU2U4 + UL U2U5 + UTUSU4 + U U3 U5+

U U4US 5 160
ULU2U3 + UTUUg + UL U2 U5 + UTUZU4 + UTU3U5+

U2U3U4U5 30 960
U UU3 + UIU2U4 + UL U2U5 + UTUSU4 + U U3 U5+

UaU3Uyg + U U3US 10 320
U UU3 + UIU2U4 + UL U2U5 + UTUSU4 + U U3 U5+

UL ULU5 + UaU3Ug + UsU3Us + UsUsUs + USULUS 1 32

Table 3: C B2-representable functions for 1 <k <5
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k| g(k) | [Hi| (teMyy) | [HGP?| | 1B =22

0 2 2 2 2
1 1 3 4 4
2 1 5 10 16
3 5 13 60 256
4 30 62 674 65,536
5| 603 820 | 22,148 | 4,294,967,296

Table 4: Numbers of C B2-representable functions
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Figure 6: Average Learning Curve For Monomial Functions of 2 Literals by CB2

1 4 2 1 1
VN >1-mepa(Mpy2,6,6) < =log, = < = + = log, = (135)
’ € 0 € € )
1 12 3 1 1
VN >1-mepa2(Mpy3,d,6) < —log, — < — + —log, = (136)
’ € ) € € )
1 61 5 1 1
VN >1-mcpa(Mna,6,€) < Eloge " < - + ;loge 5 (137)
1 819 7 1 1
VN Z ]. ~mCBZ(MN’5,(5, 6) S ElOge T < Z + ElOge g (138)

Conclusions: Learning Behaviour of CB2

In our definition of C'B2 (Definition 5.2), we allowed the similarity measure to encode a privileged
knowledge of which features are relevant to the definition of the chosen target concept. This has had
two main areas of influence. On the one hand, reasoning about the case-based representation becomes
a little more tractable; the represented function can clearly only depend on variables which are relevant
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Figure 7: Average Learning Curve For Monomial Functions of k Literals by VS-CBR

to the target concept and will agree with the target concept on those variables. (See, for example,
Proposition 5.15.) As a corollary of this, we have a simple method for testing whether a function is
‘C B2-representable’ with respect to this perfectly weighted similarity measure o, (Proposition 5.5)
and in addition we have the insight that representation with respect to oz, is stable in that adding
exemplars to a case-base representing the target concept will only ever produce a new representation of
the target concept (p. 37).

On the other hand, the extra knowledge available to the similarity measure has a very marked impact
on the learning behaviour of C'B2 compared to the ‘knowledge poor’ CB1(og). Proposition 5.20 shows
that for k < &', H/%> C Hy” = and hence |[Hf” | < |[HjP” |; in general, larger training samples are
required as k increases before C' B2 will output a good approximation to a target in My i (in contrast to
the observed behaviour of CB1(oy) ). In addition, since a ‘covering net’ of examples (p. 54) for C B2
is defined in terms of the partition (Dy\ z%) induced by the perfectly weighted similarity measure
ow, (p. 33) rather than in terms of individual examples in Dy, then the sample complexity depends
only on k and is independent of the representation size N (Corollary 5.23). Figure 6 shows the average
case learning curve of C'B2, generated as in §5.3, for target concepts defined by monomial expressions
of exactly 2 literals, defined on an example space of dimensionality 2, 6, 10 and 14 respectively. The
very close fit between the learning curves in each case suggests that the learning behaviour is indeed
independent of N in all aspects, as well as just the formal upper bound of the sample complexity.

6 Conclusions
In sections 4 and 5, some properties of the case-based learning algorithms C'B1(oy), VS-CBR and C'B2
were presented. In this final section we will review the insights into these learning algorithms that our

work has offered. Firstly, we will consider what our analysis of the idealised C'B2 allows us to say about
the ‘practical’ case-based learning algorithm VS-CBR. We will then discuss how the comparison of these
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learning algorithms illustrates the trade-off between sample complexity and computational complexity in
inductive learning. Finally, we will consider an additional ‘trick’ involving the similarity measure which
demonstrates the continuity between case-based learning and other forms of inductive learning.

The ‘practical’ algorithm VS-CBR (Definition 5.1) combines two processes; on the one hand, cases
are collected into the case-base to construct a case-based representation as in CBl(oy) and C' B2, and on
the other hand the examples are used immediately to infer the appropriate weighting for the similarity
measure oz. Although these two processes carry on in parallel, comparing the empirical behaviour
of VS-CBR with that of CB1(oy) and CB2 gives some further indications of the relative efficiencies
of these two processes. Figure 7 shows the average learning curve for VS-CBR on monomial target
concepts te Mgy, 1 < k < 3. (The graph was generated by exactly the same procedure as the other
empirical results described here.) The figure shows the learning curves starting from the same initial
accuracies defined by the proportion of positive and negative exemplars as observed in Figures 4 and 5.
The learning curves however achieve a close to perfect classification accuracy much more quickly than
the learning curve for CB1l(oy) shown in Figure 4. Indeed Figure 7 shows the learning curves ‘crossing
over’ in much the same way as Figure 5, with VS-CBR starting on a lower initial accuracy for target
concepts in Mg but approaching perfect accuracy more rapidly than the other curves. Convergence is
slower for VS-CBR than C'B2 however (note especially the difference between the horizontal scales in
Figures 5 and 7). In the average case, Figure 7 suggests that VS-CBR requires 12-13 training examples
before > 95% classification accuracy is achieved for target concepts in Mg 1, while target concepts in
Mse > and Mg 3 require ~ 20 and ~ 25 examples respectively.

The comparison of Figures 4, 5 and 7 suggests that the process of inferring a monomial representation
from positive instances of the target concept (c.f. inferring the correct weighting for oz in VS-CBR) is
much more efficient (with respect to sample size) than constructing a case-based representation (C'B, o)
from exemplars of the target concept (VS-CBR vs CB1(og)). This is completely in agreement with our
assessment of CBl(oy) in §4. On the other hand, convergence of the monomial learning algorithm is
slower than the process of constructing a representation (CB,ow,) given a priori the correct weighting
for o, for the range of parameters considered here (VS-CBR, vs C' B2). In addition to the extra examples
needed, the learning behaviour of VS-CBR will be sensitive to the size of the representation (N) where
CB2 is independent of this quantity; in the case of VS-CBR, an increasing number of examples will
be needed to rule out irrelevant bits as the size of the representation is increased. Langley and Iba
claim in passing that “we have shown analytically that the number of training instances required for
[the standard monomial learning algorithm] to achieve a given level of accuracy [in the average case]
increases only with the logarithm of the number of irrelevant attributes”[LI93, p.893], that is depends
only on the quantity N — k and not on the number of relevant attributes k. *

In addition, a further tradeoff is illustrated by the comparison of CB1(cy) and VS-CBR. Note the
low computational cost of executing CB1(oy); VS-CBR however introduces an extra computational
burden as it infers the correct weighting for oz. We suggest that this is an example of a general
trade-off between sample complexity and computational complexity that has been discovered in the
PAC-learning framework [Hau90, p.1103]. Pitt and Valiant [PV88] present an example where one choice
of representation makes the task of learning k-term DNF formulae computationally intractable, while a
different representation (representing a larger class of functions) makes the learning task feasible at the
cost of enlarging the hypothesis space and increasing the sample complexity. In the case of VS-CBR
and CB1(oy) we argue on the other hand that sample complexity is being reduced at the cost of extra
computational complexity.

In defining C'B2 as a variant of CB1(oy), we were interested in exploring the implementation of
inductive bias in case-based learning. The intuition behind notions of ‘prior knowledge’ in learning has
clearly been borne out by our comparison of these two learning schemes. At the extreme end of the
spectrum of ‘knowledge-poor’ to ‘knowledge-rich’ methods, consider the similarity measure 0'[]\]/[ defined

n contrast note that Valiant gives the worst-case sample complexity for learning the class of all monomial functions
as 2h(N + log, h) by the standard algorithm, where N is the size of the representation, ¢ = ¢ and h = % = % [Val84a,
p.444].
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in terms of a monomial expression U as follows:

70 (ch,da) = { (1) ZoJ;heﬁgi(il) () (139)
A variant of C B2 equipped with a measure 0¥ will be a learning algorithm with the strongest possible
bias for learning one specific target concept from My (indeed the measure reflects precise knowledge
of this target concept). This ‘algorithm’ will output a perfect representation of the target concept
t = hy provided that the training sample contains at least one positive and one negative example, and
is trivially proved to be PAC with sample complexity %log %. In addition to being defined in terms of
the monomial expression itself, equation (139) incorporates a better bias for learning monomial concepts
than the definitions of oy (Defn 3.1) and o (Defn 3.2) since it ensures that hypotheses output in the
case-based representation represent only monomial functions. The ‘feature counting’ approach of op and
ow is very much a disadvantage for learning monomial functions since, for small numbers of examples,
hypotheses represented using these measures are very likely to contain disjunction.

Finally, consider a modification of VS-CBR, (Definition 5.1) which infers a hypothesis hc BoM) rather
than hcp ,—y. In this case the algorithm will be exactly congruent with the standard learning algorithm
for monomial functions of [Val84al; the hypothesis output by either algorithm will be identical for any
training sample for a monomial target concept te My. The only difference that remains between the
two approaches is that the standard algorithm produces hypotheses in a representation that is much
more efficiently evaluated than the implicit, case-based representation used by the variant of VS-CBR.
It is clear however that there is continuity between case-based learning and other forms of inductive
learning, and especially that most kinds of learning can be introduced into a case memory system of the
kind we have modelled through appropriate manipulation of the similarity measure. We believe that the
work reported here has contributed to showing that the questions and problems of learning in case-based
reasoning systems are essentially the same as those in systems more frequently studied in the field of
machine learning, and that these questions can be usefully dealt with by existing techniques of the field.
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