
Case-Based Reuse of Software Examplets

Markus Grabert & Derek Bridge
University College Cork

Ireland
m.grabert/d.bridge@cs.ucc.ie

Abstract: We present a software tool for examplet reuse. We define examplets to be
goal-directed snippets of source code, often written for tutorial purposes, that show
how to use program library facilities to achieve some task. Our tool allows users to
specify both their goal (in free text) and their ‘situation’ (the source code on which they
are working). The system combines text retrieval and spreading activation through a
semantic net representation of the source code.

1 Introduction

The research we report in this paper is concerned with retrieval of reusable components.
Like a lot of the research into software-supported reuse, we draw ideas from Case-Based
Reasoning (CBR). The CBR-cycle [AP94], retrieve-reuse-revise-retain, has obvious par-
allels with the processes involved in software reuse [TA97].
In Section 2, we describe examplets, which are the reusable components that our system
stores and retrieves. Section 3 describes the architecture and operation of our system
for examplet retrieval, explaining both the text retrieval and semantic net retrieval. In
Section 4, we present the results of some experiments with the system. We describe related
research in Section 5.

2 Examplets

Modern programming languages, especially object-oriented languages, make use of large
libraries of reusable components (e.g. class definitions). We want to make it easier for
programmers to make use of the resources contained in these libraries.
In many CBR systems for software reuse, each class definition in the library is treated as
a case. But cases are supposed to have characteristics that class definitions in a library
do not. “A case is a contextualized piece of knowledge representing an experience that
teaches a lesson fundamental to achieving the goals of the reasoner.” [Ko93].

This research was funded in part by grant ST/2000/092 from Enterprise Ireland.

Examplet Goal Text
How to read directly from a URL using BufferedReader

Examplet Source Code

import j a v a . n e t . ;
import j a v a . i o . ;
pub l i c c l a s s URLReader

pub l i c s t a t i c void main (S t r i n g [] a r g s) throws E x c e p t i o n
URL yahoo = new URL(” h t t p : / / www. yahoo . com / ”) ;
B u f f e r e d R e a d e r i n = new B u f f e r e d R e a d e r (

new I n p u t S t r e a m R e a d e r (yahoo . openStream ())) ;
S t r i n g i n p u t L i n e ;
whi le ((i n p u t L i n e = i n . r e a d L i n e ()) ! = nu l l)

System . o u t . p r i n t l n (i n p u t L i n e) ;
i n . c l o s e () ;

Figure 1: An Examplet

The cases in our case base live up to the definition given in the previous paragraph. Each
of our cases contains a representation of what we call an examplet. An examplet has two
parts. One part is a snippet of source code, in our case in Java. This snippet shows how
to accomplish a task in Java using library components. Crucially then, it shows library
components in use. Each examplet is goal-directed, and so the other part of an examplet
is a statement of the goal in free text. One of our smaller examplets is shown in Figure 1.
Examplets are widely available, e.g. [Ch99]. They capture HOWTO knowledge; each
might also be thought of as a kind of FAQ. Each is hand-crafted, which tends to ensure
that it addresses programmer needs.

3 A Software Tool that Recommends Examplets

3.1 Overview

The system that we have developed helps programmers to solve common problems by
recommending the HOWTO knowledge embodied in a case base of examplets. We expect
programmers who use such a system to be actively writing their program, and then to find
that they have some quite specific goal which they are uncertain how to solve.
As we have seen, each examplet contains a free-text statement of the problem that it solves,
the examplet goal text. The user will express her goal, the query goal text, also in free-text.
Standard text retrieval techniques can be used to retrieve relevant examplets. We describe

the design of this part of our system in a little more detail in Section 3.2.
But, if the programmer is actively writing her program, then she can tell us, not only what
she is looking for, but also what she has already. In addition to a goal text, her query can
contain some or all of the source code that she has written already. By default, this source
code would be the class definition that the user is currently editing; but a user might instead
explicitly highlight a section of source code.
So in addition to doing text retrieval on goal texts, our system will attempt to match query
source code with examplet source code (the snippets of code in the examplets). This
matching is done using spreading activation in a semantic net. It is described in more detail
in Section 3.3. We believe that this makes our system more faithful to strong conceptions
of CBR. The user’s problem (query) is described by both a goal and a ‘situation’.

3.2 Text Retrieval for the User’s Goal

For text retrieval, we are using a modified version of ht://Dig 1. This is an open-source
search engine, written in C/C++, designed for use with Web sites.
Given a set of cases, one per examplet, we use ht://Dig to produce an inverted index to
the goal texts. Index entries are produced using word stemming and exclude a list of stop
words.
For retrieval, we provide ht://Dig with a thesaurus. 2

The query goal text, after word stemming and the removal of words from the stop list, is
treated purely conjunctively. Cases are scored by counting how many word stems or their
synonyms in the query match word stems in the cases.

3.3 Semantic Net Retrieval for the User’s Situation

We decided to express essential aspects of the structure of each snippet of code using a
semantic net. We placed two requirements on the process of constructing and activating
the net from code snippets:

It should be wholly automatic. This allows the easy incorporation of new examplets
into the case base.

It should be as robust as possible in the face of incompleteness or ill-formedness
in the source code. This is needed for two reasons. Firstly, the examplet author
may elide code that is unimportant to the lesson conveyed by the examplet. Sec-
ondly, since the query source code is still under development, it will typically be
incomplete and may not yet compile.

1http://www.htdig.org/
2We based this on data extracted from WordWeb (http://wordweb.info/), a free cut-down version of

WordWeb Pro.

Case
#21

main close printlnreadLine
open

Stream

URL
Reader

Buffered
ReaderURL

Input

Reader
Stream System

Key

Case Node

Class Node

Method Node

Relevance Arc

Member Arc

Invokes Arc

Figure 2: Semantic Net Fragment

Our approach is to use a parser, and to build the net from parse trees. We used the ANTLR
translator generator3, which comes with a Java grammar. We modified the parser that
ANTLR generated so that, even in the face of compiler-errors, it would still output a parse
tree, which would contain as much of the source code’s token stream as possible.
Our net is constructed by walking the parse tree. It contains five kinds of node: case,
class, interface, method and variable. And it contains five kinds of relationship (although
their semantics currently plays no part in the retrieval): relevance, subclass, implements,
member and invokes. A fragment of the net, corresponding to the examplet in Figure 1, is
shown in Figure 2. (Nodes for the String and Exception classes have been omitted
in the interests of compactness.)4

The source code in the examplets is used to construct the net. The query source code, by
contrast, is used to activate the net. The query source code is parsed and the parse tree is
walked in search of identifiers. For each class identifier, all class nodes for that identifier
are activated. For each class variable or instance variable declaration, all variable nodes
for the same identifier and type are activated. For each method identifier, all method nodes
for the same identifier and signature (including return type) are activated.
In fact, this initial activation does not exclusively use identifier equality. We use an inexact
string matching algorithm to compare identifiers in the query source code with node labels
in the semantic net. The initial activation is multiplied by the degree of similarity, [0,1].
The current implementation of inexact string matching is simplistic: it is computed as the
size of any common prefix divided by the length of the identifier in the query source code.
The search for relevant case nodes (examplets) is implemented by spreading activation
through the net. At each time point, each node spreads a proportion of the activation that
it received at the previous time point to all of its immediate neighbours. We spread only a
proportion (presently 0.7) to simulate the idea that activation decays the further it travels.

3http://www.antlr.org/
4We give a detailed description of the way we construct the net in the longer version of this paper that appears

in the on-line proceedings.

This also forms the basis of a stopping criterion (see below). The amount of activation
spread down a particular arc is further modified by multiplying by the arc weight.
A node does not spread any of its new activation if the amount of that activation is less than
a threshold amount (presently 0.1). When no node is in a position to spread any activation
or when a maximum number of time points has elapsed (currently 150), the spreading
activation terminates.
Those case nodes that have received the highest total activation are retrieved.

4 Experimental Results

We collected 40 examplets from the Web. They came from several different sources 5

which reduces the dependence of our results on any one style of examplet. Each examplet
comprises between 10 and 120 lines of text.
As well as a snippet of source code, each examplet must have a goal text. Unfortunately,
we found that the textual descriptions associated with the original examplets to be unsuit-
able. Too often, the descriptions were insufficiently goal-oriented. Rather than describing
the problem that the examplet solves, they focused on how the lines of code contribute to
the solution. We decided, therefore, to replace these by our own goal texts.
Our experimental methodology is that of an ablation study and we use the leave-one-in
methodology [AB97]. Each case in the case base is selected in turn (with replacement); a
query is created from the selected case (in the manner described below); and the query is
evaluated against the full case base. The query is successful if the case from which it was
created is among the top 5 retrieved cases.
We will explain first how we create the query goal text, and then how we create the query
source code. We asked three experienced Java programmers to look independently at
different subsets of the 40 examplets in our case base. They saw only the source code. For
each examplet that they looked at, we asked them to write their own sentence describing
the problem to which the examplet would be the solution. By this means, we obtained two
query goal texts per case. Here are the goal texts we obtained for the examplet shown in
Figure 1:

“How to copy from a URL to an output stream”
“How to read from an URL using a BufferedReader”

In the experiments, when constructing the query, one of the two query goal texts is chosen
at random. Stopwords are removed and word-stemming is applied to the chosen goal
text. Then a proportion of the text is deleted at random. The remainder is submitted to
ht://Dig. Our approach loosely simulates users whose query goal texts might be quite
fragmentary, perhaps comprising only one or two keywords.

5The sources include: http://java.sun.com/docs/books/tutorial/ and
http://examples.oreilly.com/jenut2/2nd edition/

Figure 3: Accuracy for query source code/query text alone

The other part of a query is the query source code, which is used to activate the semantic
net. We needed to simulate the idea that the user is working on some class definition when
he submits his query. His class definition may therefore be incomplete and even ill-formed.
So we delete a randomly-chosen proportion of the nodes in the parse tree and we use the
remainder to activate the net.
As we have described, query creation for a given case involves random deletion of portions
of the goal texts and source code. This places a requirement that we use cross-validation to
ensure we do not report results from unduly favourable or unfavourable random selections.
In our experiments, we use 100-fold cross-validation.
Figures 3 and 4 show our results. In particular, Figure 3 plots the retrieval accuracy for
each retrieval mode separately. We see that the more query source code or query goal text
that is supplied (i.e. the less that gets ablated) the higher the retrieval accuracy. Source code
retrieval has marginally the poorer performance when there is most ablation, but it climbs
slightly more steeply, and achieves 100% retrieval accuracy, which goal text retrieval does
not do. However, our experimental results for source code retrieval may be better than
they would be in practice: random ablation of an examplet’s source code will result in
query source code that is still structurally quite similar to the original examplet, especially
at lower levels of ablation.
The results in Figure 4 are obtained by combining the retrieval scores from the two forms
of retrieval using a weighted average, where the two forms of retrieval are weighted equally
(both 0.5). Of course, this does not guarantee that the two forms of retrieval are being
treated equally, since the normalisation of the scores may be imperfect. We have tried
other weighting schemes (not shown in this paper); the results are not much different.
For our 40 examplets, the semantic net contains approximately 340 nodes and 480 arcs.
The system is written in Java. Running the Java 1.3 interpreter on a 1GHz Pentium3 with
256MB RAM, it takes approximately 10 seconds on average to run a single query, of which
slightly over half is the time to run our modified parser.

Figure 4: Combined Results

5 Related Work

The literature reports numerous systems that have been built to support software reuse.
Approaches vary widely.6

One of the more concerted efforts has been conducted by Gomes and others at the Uni-
versity of Coimbra in Portugal. In the earlier work [GB99] [GB00] the emphasis was on a
quite deep representation of software components. Specifically, they used what they called
a Function-Behaviour Case Representation, attempting to express both the ‘what’ and the
‘how’ of the component. Attention, however, was confined to cases written in VHDL, a
simple hardware description language.
In later work [Go01] [Go02a] [Go02b], their attention has moved to software design.
Cases represent designs and design patterns expressed as class diagrams in the Unified
Modeling Language (UML). Similarity-based retrieval exploits the identifiers (class, at-
tribute and method names) and the structural relations in the UML diagrams. Semantic
relations between identifiers can be found by using WordNet. Once candidate cases have
been retrieved in this fashion, a heuristically-guided structural mapping algorithm sets up
correspondances between the user’s partial design and the retrieved cases. The work is
unusual in providing some support for automatic adaptation of the user’s design: the sys-
tem has procedural knowledge that enables it to attempt to apply a retrieved design to the
user’s design.

6The longer version of this paper, which appears in the on-line proceedings, contains a more comprehensive
review of the literature.

6 Conclusions

We have presented a tool for retrieval of software examplets. The user can specify both
her goal (as text) and her current situation (the code that she has been writing). The sys-
tem uses textual retrieval and spreading activation in a semantic net to achieve promising
results.
In future work, we wish to take a broader view, supporting design-oriented activities as
well as coding ones. We would expect, however, to continue to pursue the idea of retrieval
based on both user goal and situation.

References

[AB97] Aha, D.W. & Breslow, L.A.: Refining Conversational Case Libraries, in D.B.Leake &
E.Plaza (eds.), Procs. of the Second International Conference on Case-Based Reason-
ing, LNAI 1266, pp.267–278, Springer, 1997.

[AP94] Aamodt, A. & Plaza, P.: Case-Based Reasoning: Foundational Issues, Methodologi-
cal Variants, and System Approaches, Artificial Intelligence Communications, vol.7(1),
pp.39–59, IOS Press, 1994.

[Ch99] Chan, P.: The Java Developers Almanac 1999, Addison-Wesley, 1999

[GB99] Gomes, P. & Bento, C.: Automatic Conversion of VHDL Programs into Cases, in
S.Schmitt & I.Vollrath (eds.), Procs. of the Workshop Programme at the Third Inter-
national Conference on Case-Based Reasoning, 1999.

[GB00] Gomes, P. & Bento, C: Learning User Preferences in Case-Based Reuse, in E.Blanzieri
& L.Portinale (eds.), Procs. of the European Workshop on Case-Based Reasoning,
LNAI 1898, Springer, pp.112–123, 2000.

[Go01] Gomes, P., Pereira, F.C., Bento, C. & Ferriera, J.L.: Using Analogical Reasoning to Pro-
mote Creativity in Software Reuse, in R.Weber & C.G.von Wangenheim (eds.), Procs.
of the Workshop Programme of the Fourth International Conference on Case-Based
Reasoning, pp.152–158, 2001.

[Go02a] Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferriera, J.L. & Bento, C.:
Case Retrieval of Software Designs using WordNet, in F.van Harmelen (ed.), Procs. of
the 15th European Conference on Artificial Intelligence, pp.245–249, 2002.

[Go02b] Gomes, P., Pereira, F.C., Paiva, P., Seco, N., Carreiro, P., Ferriera, J.L. & Bento,
C.: Using CBR for Automation of Software Design Patterns, in S.Craw & A.Preece
(eds.), Procs. of the Sixth European Workshop on Case-Based Reasoning, LNAI 2416,
Springer, pp.534–548, 2002.

[Ko93] Kolodner, J.: Case-Based Reasoning, Morgan-Kaufmann, 1993.

[TA97] Tautz, C. & Althoff, K.-D.: Using Case-Based Reasoning for Reusing Software Knowl-
edge, in D.B.Leake & E.Plaza (eds.), Procs. of the Second International Conference in
Case-Based Reasoning, LNAI 1266, Springer, pp.156–165, 1997.

