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Abstract. Playlists are a major way of interacting with music, as evi-
denced by the fact that streaming services currently host billions of
playlists. In this content overload scenario, it is crucial to automatically
characterise playlists, so that music can be effectively organised, accessed
and retrieved. One way to characterise playlists is by their listening con-
text. For example, one listening context is “workout”, which characterises
playlists suited to be listened to by users while working out. Recent work
attempts to predict the listening contexts of playlists, formulating the
problem as multi-label classification. However, current classifiers for lis-
tening context prediction are limited in the input data modalities that
they handle, and on how they leverage the inputs for classification. As a
result, they achieve only modest performance. In this work, we propose
to use knowledge graphs to handle multi-modal inputs, and to effectively
leverage such inputs for classification. We formulate four novel classifiers
which yield approximately 10% higher performance than the state-of-
the-art. Our work is a step forward in predicting the listening contexts
of playlists, which could power important real-world applications, such
as context-aware music recommender systems and playlist retrieval sys-
tems.

Keywords: Music playlists · Context-awareness · Recommender
systems

1 Introduction

Music is commonly organised in some form of a playlist. According to a standard
definition, a playlist is a sequence of music songs [5]. Playlists are a popular fea-
ture of music streaming services. Users consume playlists for 31% of their total
listening time [31]; and 55% of users create their own playlists [27]. Playlists are
also created for users by professional editors and by algorithms. For instance,
the popular music streaming service Spotify was hosting more than four billion
playlists in 2021.1 In this content overload scenario, it is crucial to automatically
characterise playlists, so that music can be effectively organised, accessed and

1 https://backlinko.com/spotify-users.
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Fig. 1. A knowledge graph representing two playlists and three songs in total. The
bottom and top boxes indicate two portions: Gi, which contains song, playlist and
listening context nodes, and Gm, which contains metadata nodes, such as musical
genres.

retrieved [9]. A common approach is playlist tagging, which is the task of assign-
ing to a playlist one or more tags, drawn from a fixed vocabulary of tags. For
example, [14] proposes a dataset of playlists annotated with a variety of different
tags, like musical genres or decades. Similarly, [8] proposes a dataset of playlists
annotated with listening context tags. Examples of listening context tags are
“workout” and “party”, which characterise playlists suited to be listened to by
users while working out, and while having a party.

Listening context tags are interesting because they are user-centered, rather
than music-centered [30]. For example, musical genre and decade tags refer to
music. On the other hand, listening context tags refer to how people listen to
music. As such, the accurate prediction of listening contexts can allow advances
at the intersection of music information retrieval (MIR) and human-computer
interaction (HCI), such as context-aware music recommendation [33]. In fact,
recommending the right playlist at the right time is only possible if the listening
context suited to listening to the playlist is known.

To the best of our knowledge, there exists only one attempt to predict the
listening context of music playlists: [8]. The authors of [8] set up a multi-label
classification problem, in which playlists are classified for their listening contexts,
and they propose four classifiers: two matrix factorisation (MF)-based classifiers,
that work by counting how many times a song is associated with each playlist
listening context, and two convolutional neural network (CNN)-based classifiers,
that work with song audio. However, these classifiers are limited in that they do
not incorporate song metadata, such as musical genres.

In this paper, we formulate two novel knowledge graph (KG)-based classifiers.
KGs are a powerful data model, suitable for storing heterogeneous information
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[34]. Figure 1 depicts a KG like those we use, made up of two distinct portions: Gi

and Gm. The portion Gi represents the membership of songs to playlists, and of
playlists to listening contexts. The portion Gm represent song metadata, solving
the limitation of existing classifiers that they do not use song metadata. The KG-
based classifiers that we propose work by building a KG, such as the one depicted
in Fig. 1, embedding the KG, so that each node and edge is transformed to a
feature vector, and using the song embeddings to predict the listening contexts
of playlists.

We benchmark the classifiers with a dataset of playlists annotated with their
listening contexts, similar to the one proposed in [8]. The two KG-based classi-
fiers we propose achieve approximately 10% higher performance than the exist-
ing predictors. A sensitivity analysis reveals that the KG-based classifiers can
incorporate song metadata effectively.

However, the two KG-based classifiers do not consider song audio. So, we
formulate another two novel predictors, as the hybrid of the CNN-based and KG-
based classifiers. As expected, the hybrid classifiers outperform MF-based, KG-
based and CNN-based predictors, setting the new state-of-the-art performance
in the task.

We release the source code and the dataset that supports our work here, so
as to allow reproducibility and foster new research on the subject.2

In summary, our contributions are:

1. The first two KG-based listening context predictors of music playlists that
incorporate song metadata;

2. Another two novel predictors that incorporate KGs and song audio;
3. A comparison of the predictors reporting approximately 10% higher perfor-

mance than the state-of-the-art, and showing the impact of song metadata
on performance.

The rest of the paper is organised as follows: in Sect. 2, we review related
work on music listening contexts, and especially work that looks into how music
consumption changes in different listening contexts. We also review related work
in music tagging. In Sect. 3, we describe our four novel classifiers for predicting
the listening context of music playlists. In Sect. 3, we present extensive experi-
ments that compare the novel classifiers to existing classifiers, and validate the
design of the novel classifiers with a sensitivity analysis. Section 5 concludes the
paper and outline future work.

2 Related Work

The task of tagging can be defined as marking content with descriptive terms,
also called keywords or tags, drawn from a fixed vocabulary [16]. Content can
refer to different objects, such as text, audio, images or video. For example,
[7] propose an approach for tagging an image with its objects, such as: “fish”,

2 https://github.com/GiovanniGabbolini/playlist-context-prediction.

https://github.com/GiovanniGabbolini/playlist-context-prediction
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“plane” or “shoe”. And, [25] survey tagging systems in the text, image and music
domains.

In this work, we focus on the music domain, as tagging is a major topic
in music information retrieval (MIR). Music tagging is the task of classifying
music in one or more tag classes. As such, the vocabulary of tags is typically
assumed to be fixed. One common setup is song tagging, where single songs
are classified. [36], for example, offers a comparison of recent Convolutional
Neural Network (CNN)-based classifiers: a CNN extracts learned features from
the audio of a song, and leverages these features to output appropriate tags.
Similarly, the state-of-the-art classifiers proposed in [10,29,35] are CNN-based.
Progress in song tagging is enabled by the availability of large scale datasets,
such as the Million Songs Dataset [3], the MagnaTagATune Dataset [24] and the
MG-Jamendo Dataset [4]. These datasets contain songs annotated with tags of
several categories: genre tags (e.g. “jazz”), instrumentation tags (e.g. “guitar”),
decade tags (e.g. “80s”), mood tags (e.g. “happy”) and listening context tags
(e.g. “party”). A related (but different) task to song tagging is playlist tagging,
where a list of songs is tagged, instead of a single song. [14] proposes a dataset of
playlists annotated with a variety of different tags, like genre tags or decade tags.
Classifiers for song tagging can be extended to do playlist tagging. For example,
[8] proposes a CNN-based playlist classifier, with an architecture similar to the
CNN-based song classifiers.

Previous work shows that music listening behaviour depends on the listening
context [11,17]. For example, users listen to one type of music while having a
party, to another type of music while spending time alone, and to another type
while working. Context-aware music recommender systems [33] address the user’s
need to access the right music in the right context. Applications include: context-
aware song and playlist recommendation, and context-aware playlist continua-
tion [31]. Predicting the listening context that suits some music is a first step
towards context-awareness. Hence, some of the recent work on music tagging
focuses on listening context tags only. For example, [19,20] propose a dataset of
songs annotated with listening context tags, and a baseline CNN-based classifier.
And, [8] proposes a dataset of playlists annotated with listening context tags,
such as “workout” and “party”, and four baseline classifiers: two CNN-based
and another two MF-based classifiers.

Our work here is on playlist tagging, as we focus on predicting the listening
contexts of playlists. We build on [8], as we propose four novel classifiers, which
outperform the four classifiers that they propose, setting the new state-of-the-art
performance in the task.

3 Method

Predicting the listening contexts of playlists is framed by the authors of [8] as
a multi-label classification problem. The same authors propose four such classi-
fiers (MF-avg, MF-seq, CNN-avg and CNN-seq). Here, we propose another
four such classifiers (KG-avg, KG-seq, Hybrid-avg, Hybrid-seq). As we will
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explain below, six of the classifiers that we consider follow the schema depicted
in Fig. 2. The two hybrid classifiers follow the schema depicted in Fig. 3. In the
rest of this section, we summarise the four classifiers that were proposed in [8],
and we describe the four classifiers that we propose.

Fig. 2. Schematic architecture of MF-avg, MF-seq, CNN-avg, CNN-seq, KG-avg

and KG-seq.

Fig. 3. Schematic architecture of Hybrid-avg and Hybrid-seq.

3.1 Matrix Factorisation-Based

The two matrix factorisation (MF)-based classifiers (MF-avg and MF-seq),
originally proposed in [8], take as input a matrix X ∈ R

N,M where N is the
number of songs and M is the number of listening contexts. The element at row
n and column m of X is equal to the number of times the nth song appears
in playlists that have the mth context. The matrix X is factorised into two
matrices, S ∈ R

N,H and C ∈ R
H,M , using WR-MF, which is the MF procedure

described in [18], so that SC ≈ X. H is the embedding dimension, which is
a hyper-parameter of WR-MF. The rows of S and the columns of C contain,
respectively, song and listening context embeddings. Then, the song embedding
vectors for the songs in a given playlist (a subset of the embeddings contained
in S) are either averaged song-wise (in MF-avg) or input to a single-layered
LSTM network (in MF-seq), to get a playlist embedding vector, which is fed
into a single-layered feed-forward (FF) network that outputs a score for each
listening context.
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The architecture of MF-avg and MF-seq fit into the schema of Fig. 2 as the
matrix X is the input, and WR-MF is the song embedding extractor. Notice that
MF-avg and MF-seq work in two steps, that is the song embedding extractor
is trained separately from the rest.

3.2 Convolutional Neural Network-Based

The two convolutional neural network (CNN)-based classifiers (CNN-avg and
CNN-seq), originally proposed in [8], extend the state-of-the-art in song tagging
to playlist tagging. Given a song, they consider the full audio, and compute mel-
spectrograms for every contiguous 3-seconds of audio. The mel-spectrogram is
a hand-crafted feature extracted from audio, commonly used in many music
information retrieval (MIR) tasks, such as song tagging, e.g. [10,29,35]. The
mel-spectrograms are input to a Convolutional Neural Network (CNN) with five
1D-convolutional layers, which outputs an embedding vector for every 3-seconds
of audio. Such embeddings are averaged point-wise, to get one song embedding
vector. Given a playlist, the song embedding vectors are computed as above,
and either averaged song-wise (in CNN-avg) or input to a single-layered LSTM
network (in CNN-seq), to get a playlist embedding vector, which is fed into a
single-layered (FF) network that outputs a score for each listening context.

The architecture of CNN-avg and CNN-seq fit into the schema of Fig. 2
as the mel-spectrograms are the input, and the CNN is the song embedding
extractor. Notice, however, that CNN-avg and CNN-seq are end-to-end, that
is the song embedding extractor is trained jointly with the rest.

3.3 Knowledge Graph-Based

A knowledge graph (KG) is a set of triples G = {(e, r, e′) | e, e′ ∈ E, r ∈ R},
where E and R denote, respectively, the sets of entities (nodes) and relationships
(edges). KGs are suitable for representing heterogeneous information [34]. For
example, [28] builds a KG representing users, their interactions with songs, and
acoustical metadata, such as what musical instruments are played in the songs.

The information we want to represent is: songs; playlists; listening contexts;
and song metadata. So, we build a KG composed of two portions. (1) Gi: the
portion containing song nodes, playlist nodes and listening context nodes. These
nodes are connected by edges according to membership: a song node is connected
to the playlist nodes the song belongs to, and a playlist node is connected to
its listening context node. (2) Gm: the portion containing song metadata, i.e.
the record label associated with the song, the musical genres associated with the
song, the year and the month when the song was released, the artist of the song,
the city and the country where the artist is currently based, and where they
were born. We selected these items of metadata empirically, through informal
experimentation, and by taking inspiration from previous work; for example, [21]
finds that the release year of a song can be a predictor for the listening context.
In future work, Gm can be readily expanded to include more song metadata,
such as information extracted from song lyrics. For each piece of song metadata,
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there is a node in Gm. Song nodes are connected by edges to their metadata
nodes. Song metadata may be missing, e.g. we may not know the record label
for a particular song. We obtain metadata from the crowd-sourced database
MusicBrainz.3

Figure 1 depicts a KG, like those that we build.
We embed the KG using the Trans-D algorithm, which is a state-of-the-

art KG embedding algorithm [12]. Trans-D produces an embedding vector for
every node and edge in the KG, in such a way that the topology of the KG is
preserved. In particular, given a KG G, and given a triple (e, r, e′) ∈ G, Trans-

D produces three embedding vectors ve, vr and ve′ that satisfy a relationship
similar to ve + vr ≈ ve′ , for every triple in G. The embedding vectors of the
song nodes in the KG for the songs in a playlist are either averaged song-wise
(in KG-avg) or input to a single-layered LSTM network (in KG-seq), to get
a playlist embedding vector, which is fed into a (FF) network, that outputs a
score for each listening context.

The architecture of KG-avg and KG-seq fit into the schema of Fig. 2 as
the KG we build is the input, and Trans-D is the song embedding extractor.
Notice that KG-avg and KG-seq work in two steps, that is the song embedding
extractor is trained separately from the rest.

The MF-based and KG-based algorithms both leverage information about
listening contexts when computing song embeddings. However, KG-based algo-
rithms exploit that information more effectively. For example, let us consider
the scenario depicted by the portion Gi of the KG in Fig. 1 where there are
two playlists, playlist1 and playlist2, whose listening contexts are respectively
context1 and context2, and which contain respectively the songs song1 & song2
and song2 & song3. MF song embeddings are aligned with their listening con-
texts, as explained in Sect. 3.1. In the example above, the MF embedding of song1
is aligned with context1, the MF embedding of song3 is aligned with context2,
and the embedding of song2 is aligned with both context1 and context2. How-
ever, song1 and song2 are in the same playlist (playlist1). As such, we expect
the embedding of song1 to be aligned, to some extent, also with context2, and
not only with context1; similarly for the embedding of song3. That is, MF-based
algorithms ‘short-circuit’ the representation of playlists by modelling the asso-
ciation of songs to playlist listening contexts directly. KG embeddings preserve
the topology of the KG, and so can overcome the short-circuiting problem of the
MF-algorithms. In the example above, the songs in Gi are all connected with
each other, via the explicit representation of the playlists as well as the listening
contexts. That is, the embeddings of song1, song2 and song3 are all aligned, to
some extent with context1, and to some other extent with context2. The short-
circuiting problem undermines the performance of the MF-based classifiers, as
we empirically prove in Sect. 4.3. In a similar vein, [26] propagates tags among
songs in the same playlists, and measure an increase in performance.

3 https://musicbrainz.org.

https://musicbrainz.org
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3.4 Hybrid

The CNN-based classifiers and the KG-based classifiers differ on their input data,
as the CNN-based classifiers rely on song audio, while the KG-based classifiers
rely on a KG representation of songs, playlists, listening contexts, and song
metadata. The audio and the KG differ in modality, as well as availability. For
example, while song audio is available for every song in the catalogue, a KG such
as the one we use may represent the most famous songs well, but it may fail to
represent properly more niche songs, which is a manifestation of the long-tail
problem [22], and it may also fail to represent newly-released songs. To address
this limitation, we complement the KG-based classifiers with the CNN-based
classifiers, by formulating two hybrid classifiers.

The hybrids work by jointly running a KG-based classifier (KG-avg or KG-

seq) and a CNN-based classifier (CNN-avg or CNN-seq), and by fusing the
two playlist embedding vectors that they compute, before they are passed to a
single-layered FF network that outputs a score for each listening context. We
refer to Hybrid-avg as the hybrid of KG-avg & CNN-avg and to Hybrid-

seq as the hybrid of KG-seq & CNN-seq. The architecture of the two hybrids
follow the schema of Fig. 3.

For the embedding fusion, both the audio and KG-based playlist embedding
vectors are input to two separate linear layers, two separate non-linearities, and
then summed point-wise, as suggested by [2]. We did experiment with other
simple fusion strategies, e.g. concatenation, but they achieved lower performance.

3.5 Implementation Details

Our implementation of CNN-avg and CNN-seq is a little different from the
original paper [8] as we make two simplifications. First, we use Spotify’s 30-
second audio previews of the songs instead of their full audio. These audio pre-
views are freely available, unlike the full audio, which is expensive to access
due to copyright restrictions. Moreover, the usage of audio previews make our
work reproducible. Second, we average the 3-second mel-spectrograms of a song
point-wise in input to the CNN. As such, the CNN receives only one spectro-
gram, and outputs the song embedding directly. This second simplification saves
computing resources. In Sect. 4, we show that our implementation of the CNN-
based models outperforms the MF-based models, which is consistent with the
original paper. More specifically, our implementation of CNN-seq achieves 7%
higher performance than MF-seq, which is consistent with the original paper;
similarly for CNN-avg and MF-avg. Given those results, we are confident that
our implementations of the CNN-based models, although simplified, are as valid
as the original implementations presented in [8].

We compute the mel-spectrograms for the CNN-avg and CNN-seq classi-
fiers with 22,050 Hz sampling rate, 1,024 FFT size, 512 hop size, and 128 mel
bins. We set hyper-parameters of the MF and CNN-based classifiers as in the
original paper [8]. That is, we set the song embedding dimension to 50, and we
use ReLU as the non-linearity. We do the same in the KG-based and hybrid
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classifiers. We train the classifiers with early-stopping, monitoring FH@1 on the
validate set, with patience equal to ten. We tune other hyper-parameters of the
eight classifiers (learning rate, weight decay and batch size) using bayesian opti-
misation [32]. We fix the number of trials of the bayesian optimiser to 20. For the
WR-MF and Trans-D embedding procedures, we use the default parameters
and we set the number of epochs to ensure convergence of the loss function.

For other implementation details, we refer the reader to the source code that
supports our work here.

4 Experiments

We compare the classifiers described in Sect. 3, and variants of those, on their
performance in predicting the listening context of music playlists.

4.1 Dataset

We use a dataset of playlists annotated with their listening contexts. The dataset
was annotated by the authors of [8], starting from user playlists contained in the
Spotify Million Playlist Dataset (MPD) [6], and retaining only the portion of
playlists that have a listening context as title.4 Examples of listening contexts
present in the dataset are: driving, studying and summertime. For other exam-
ples, we refer the reader to the dataset that supports our work here. Also, we
refer the reader to [8] for more information on the annotation procedure. Each
playlist is annotated with one listening context. We split the dataset randomly
into train, validate and test sets, accounting respectively for 60%, 20% and 20%
of the total playlists. Similar to [8], we filter out songs that occur in the validate
and test sets but not in the train set, as some classifiers cannot handle at testing
time songs not seen at training time. The classifiers that have this limitation are
MF-avg, MF-seq, KG-avg and KG-seq. They work by training a song embed-
ding extractor model in a first step, separately from the classifier that outputs
the listening context, see Sects. 3.1 and 3.3. As a result, embeddings for songs
not present at training time are not available at test time. In a real world sce-
nario, where new releases are frequently added to the songs catalogue, it would
be necessary to incrementally train the models so that the training set covers
all songs in the catalogue. An alternative is to use CNN-avg and CNN-seq, as
they rely on the audio signal, which is available for songs not seen at training
time.

Table 1 contains statistics of the dataset that we use (train, validate and test
splits together).

4 The dataset we use is not the one used in [8], which is proprietary, but it was supplied
to us by the authors of [8] as a dataset annotated with the same procedure, and in
which similar results can be obtained.
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Table 1. Dataset statistics.

Statistic Value

Number of playlists 114,689

Average playlist length 62.6

Number of unique songs 418,767

Number of unique listening contexts 102

4.2 Metrics

We call D the test set, and we call p a playlist in the test set, that is p ∈ D. We
call |D| the number of playlists in the test set. The classifiers described in Sect. 3
predict a score for each listening context. As such, given a playlist, a classifier
predicts a ranking of listening contexts, by decreasing score. Given a ranking
of listening contexts for a playlist p, we call rankp the position of the correct
listening context in the ranking. For example, if a classifier assigns the highest
score to the correct listening context, then rankp = 1. Instead, if the classifier
assigns the lowest score to the correct listening context, then rankp = 102 (see
Table 1).

We compare the classifiers for their performance in predicting the listening
contexts of the playlists in D. We measure performance with four metrics, as in
[8]:

Flat hits (FH@1 , FH@5). Flat hits is the percentage of playlists D such that
rankp ≤ k. In our case, since the goal is classification rather than retrieval,
we consider only k = 1 and k = 5 and no higher values for k. In formulas:

FH@k =
1

|D|
∑

p∈D

1(rankp ≤ k)

where 1(rankp ≤ k) is the indicator function. That is, 1(rankp ≤ k) = 1
if rankp ≤ k and 0 otherwise. In other words, FH@1 is the percentage of
playlists for which the classifier predicts the listening context correctly. And,
FH@5 is the percentage of playlists for which the classifier predicts the correct
listening context among the first five predictions.

Mean reciprocal rank (MRR). The reciprocal rank is the reciprocal of rankp.
The MRR is the average of those reciprocals ranks. In formulas:

MRR =
1

|D|
∑

p∈D

1
rankp

.

Mean average precision (MAP@5). MAP is equivalent to MRR, except that
we set the reciprocal rank to 0 when rankp > k5. That is, if rankp > k for

5 Our formulation of MAP is different from others, which allow for multiple relevant
items. In our case, there is only one relevant item: the correct listening context.
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Table 2. Performance of the classifiers.

FH@1 FH@5 MRR MAP@5

MF-avg 0.299 0.536 0.416 0.386

MF-seq 0.327 0.595 0.452 0.423

CNN-avg 0.291 0.583 0.425 0.395

CNN-seq 0.352 0.639 0.484 0.456

KG-avg 0.388 0.678 0.521 0.495

KG-seq 0.389 0.678 0.520 0.494

Hybrid-avg 0.395 0.687 0.528 0.503

Hybrid-seq 0.389 0.678 0.520 0.495

every p ∈ D, then MAP@k = 0. In our case, we consider k = 5. In formulas:

MAP@k =
1

|D|
∑

p∈D

1
rankp

× 1(rankp ≤ k).

On the one hand, FH@k disregards the actual position of the correct listening
context in the ranking, but counts how frequently this position is lower than a
threshold k. On the other hand, MAP@k and MRR do account for the actual
position of the correct listening context in the ranking. Therefore, these metrics
give a multi-sided view of the classifiers’ performance.

We set up significance tests to check whether differences in performance are
statistically significant or not. Following [13], we set up a t-test for MRR and
MAP@5, and a paired bootstrap test for FH@1 and FH@5. Similar to [23], we
fix the number of bootstrap replicas to 1000.

4.3 Results

We conduct two experiments: a comparison with the state-of-the-art, and a sen-
sitivity analysis.

Comparison with State-of-the-Art. We measure the performance of the
classifiers that we propose (KG-avg, KG-seq, Hybrid-avg, Hybrid-seq), and
the performance of the state-of-the-art baselines, i.e. the existing listening con-
text classifiers (MF-avg, MF-seq, CNN-avg, CNN-seq). The results are in
Table 2.

The classifiers that we propose outperform the baselines by a considerable
amount. Hybrid-avg scores highest performance, improving by approximately
10% over the baselines. The improvement in performance is statistically signifi-
cant (p < 10−4). In general, all the classifiers we propose improve performance
over the baselines (p < 10−4).

The improvement in performance has real world relevance. For example,
Hybrid-avg achieves 12% higher FH@1 than the best baseline (0.395 vs 0.352),
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Table 3. Performance of KG-based classifiers with (w) and without (wo) song meta-
data.

FH@1 FH@5 MRR MAP@5

KG-avg wo metadata 0.375 0.665 0.507 0.481

KG-avg w metadata 0.388 0.679 0.521 0.495

KG-seq wo metadata 0.382 0.668 0.513 0.487

KG-seq w metadata 0.388 0.679 0.520 0.495

which means than in a sample of 1000 playlists, our algorithm predicts the listen-
ing context correctly 395 vs 352 times, on average. Considering that the current
databases contain millions of playlists, the 12% increase over the baselines is
particularly ‘tangible’.

We notice that the more complex seq variants of the algorithms are not
always superior to their simpler avg variant. MF-seq and CNN-seq have higher
performance than, respectively, MF-avg and CNN-avg (p < 10−4). But we do
not find any statistically significant differences between the performance of KG-

avg and KG-seq, while Hybrid-seq has lower performance than Hybrid-avg

(p < 10−4). Probably, the architecture of Hybrid-seq is too complex for the
task at hand, and may overfit the training set, while the simpler Hybrid-avg

generalises better to new data. Moreover, the result corroborates previous work
[8], where the seq variant is found to be sometimes superior and sometimes
inferior to the avg variant.

The hybrid classifiers are the combination of the (audio) CNN-based and
KG-based classifiers. Accordingly, Hybrid-avg has higher performance than
CNN-avg and KG-avg. Though statistically significant (p < 10−4), the increase
in performance is only slight. We can understand the result by looking at the
literature on the well-studied task of music similarity [1]. Flexer [15] shows that
increasing the performance of similarity algorithms is particularly challenging
after a certain threshold, as there exists an upper bound to performance, caused
by the low agreement of different users in the perception of music similarity.
Likewise, humans can have different perceptions of the right listening context
for a given playlist. In the dataset we use, each song is associated with 17 different
playlist listening contexts, on average. As such, we expect that increasing the
performance of classifiers can become particularly challenging after a certain
threshold. For example, Hybrid-seq has higher performance than CNN-seq

(p < 10−4), but not over KG-seq (no statistically significant difference).

Sensitivity Analysis. KG-based classifiers have as input a KG with songs,
playlists, their listening contexts (portion Gi) and song metadata (portion Gm).
We measure the performance of variants of the KG-based classifiers that have as
input only the portion Gi of the full KG. The results are in Table 3, and show
an increase in performance when using metadata (p < 10−4). This indicates
that the KG-based classifiers make effective use of song metadata for predicting
listening contexts. However, the increase in performance is only slight, and again
can be explained by the work of Flexer [15], as in Sect. 4.3.



342 G. Gabbolini and D. Bridge

The Gi portion of the KG contains the same information as the input to
the MF-based classifiers, i.e. playlist listening contexts. However, as argued
in Sect. 3.3, MF-based classifiers suffer from what we called the playlist short-
circuiting problem, i.e. they model the association of songs to playlist listening
contexts directly, while KG-based classifiers do not. A comparison of the results
of the KG-based classifiers without metadata in Table 3 and the MF-based clas-
sifiers in Table 2 reveals the consequences of these two ways of modelling the
information. The comparison shows that the KG-based algorithms exploit that
information more effectively, since their results are significantly superior to those
of the MF-based algorithms (p < 10−4).

5 Conclusions and Future Work

We propose four novel systems for predicting the listening contexts of music
playlists, which include, for the first time, song metadata in their models. In two
of them, we represent songs, playlists, listening contexts and song metadata in
a KG, that we embed, and we use the song embeddings to make predictions. In
the other two, we combine the KG and song audio in a unique hybrid model. We
benchmark the performance of the predictors we propose, reporting an increase
in performance of approximately 10% over the state-of-the-art. We also show,
through a sensitivity analysis, that the KG-based predictors can incorporate the
song metadata effectively. We argued that the improvement in performance that
we have achieved has real world relevance.

Our work can power a number of real applications that make use of listening
contexts, such as context-aware recommender systems. More generally, our work
introduces a way to use KGs for effective music classification, which is an under-
explored direction.

Future work include the construction of a novel playlist extender i.e. one that
recommends songs to add to a playlist but that ensures that the new songs are
suited to the playlist listening context.
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