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Abstract In Case-Based Reasoning (CBR), case base maintenance algorithms re-
move noisy or redundant cases from case bases. The best maintenance algorithm to
use on a particular case base at a particular stage in a CBR system’s lifetime will
vary. In this paper, we propose a meta-case-based classifier for selecting the best
maintenance algorithm. The classifier takes in a description of a case base that is
to undergo maintenance, and uses meta-cases—descriptions of case bases that have
undergone maintenance—to predict the best maintenance algorithm. For describ-
ing case bases, we use measures of dataset complexity. We present the results of
experiments that show the classifier can come close to selecting the best possible
maintenance algorithms.

1 Introduction

In Case-Based Reasoning (CBR), case base editing is a form of case base mainte-
nance in which algorithms use heuristics to select cases to delete from case bases.
In the context of using CBR for classification, noise reduction algorithms seek to
delete noisy cases, with the goal of increasing classification accuracy; redundancy
reduction algorithms seek to delete redundant cases, with the goal of increasing
retrieval efficiency while, as much as possible, not harming classification accuracy.

As is apparent from the previous paragraph, case base maintenance is a multi-
objective optimization problem. An algorithm cannot, in general, maximize both
the number of cases it deletes and the accuracy of the resulting case base. To see
this in extreme form, imagine an algorithm that proposes deletion of all but one

Lisa Cummins
Department of Computer Science, University College Cork, Ireland, e-mail: lec1@cs.ucc.ie

Derek Bridge
Department of Computer Science, University College Cork, Ireland, e-mail: d.bridge@cs.
ucc.ie



Lisa Cummins and Derek Bridge

case: deletion has been maximized but a case-based classifier will now incorrectly
predict the class of all target problems whose true class is different from the class of
the case that remains in the case base.

In our previous work, we proposed two strategies for investigating the trade-off
between these two objectives [5]. One was to compute the Pareto front, i.e. those
algorithms not dominated by any other algorithms. The other was to combine the
percentage of cases deleted and the percentage accuracy of the case base after main-
tenance into a single number. We proposed to use their harmonic mean. The har-
monic mean penalizes large differences between the two values so that a high mean
is only produced if both individual values are high. In this way, we identify algo-
rithms which have a high value for both accuracy and deletion. The disadvantage of
the more conventional arithmetic mean is that it can produce similar values for, e.g.,
an algorithm with very high accuracy but very low deletion and an algorithm with
medium deletion and accuracy. We found empirically that algorithms with high har-
monic mean tended to correspond to the subset of those on the Pareto front which
struck a good balance between deletion and accuracy.

Most case base maintenance algorithms are composites which combine a noise
reduction phase and a subsequent redundancy reduction phase. The three most com-
mon are:

Brighton & Mellish’s Iterative Case Filtering algorithm (ICF) [3]: ICF uses the
Repeated Edited Nearest Neighbour algorithm (RENN) [26] to remove noisy
cases. RENN regards a case as noisy if it has a different class from the majority
of its k nearest neighbours. After running RENN, ICF then removes redundant
cases. It regards ‘interior’ cases, i.e. ones within clusters of same-class cases, as
redundant ones, and aims to retain cases on the boundaries between classes be-
cause these cases are important for classification accuracy. Specifically, the ICF
redundancy reduction phase removes cases that are solved by more cases than
they themselves solve.

McKenna & Smyth’s algorithm (RC) [18]: RC, like ICF, uses RENN to remove
noisy cases. But its redundancy reduction phase is quite different. It aims to retain
a case if it is surrounded by many cases of the same class, while treating as
redundant, and deleting, those that surround it.

Delany & Cunningham’s Case Base Editing algorithm (CBE) [6]: CBE’s first
phase uses Blame-Based Noise Reduction (BBNR), which regards a case as
noisy if it causes other cases to be mis-classified. CBE’s second phase uses Con-
servative Redundancy Reduction (CRR), which, like ICF, regards ‘interior’ cases
as redundant. But CRR has a different heuristic from ICF: CRR removes cases
that solve other cases.

There are many other possible algorithms—indeed, in our own earlier work we de-
fined a constructive framework called MACE (Maintenance by a Committee of Ex-
perts), using a grammar of maintenance algorithms, which defines an infinite set of
case base maintenance algorithms [5].

Their different heuristics give case base maintenance algorithms different biases.
It is well-known that the algorithms perform differently on different case bases (see,
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e.g., [3, 5]): one size does not fit all in case base maintenance. Additionally, it may
be that even the same case base may need to undergo maintenance by different
algorithms at different points in its lifetime. For example, a case base developed
from a legacy database may require noise removal in its early stages to make it
cleaner, but redundancy removal as it matures and collects more experience. The
research problem that we tackle in this paper is: how to choose a good maintenance
algorithm for a given case base at a given time.

Imagine that we collect experience across the CBR community to say which al-
gorithm or algorithms worked well for a case base at a particular stage in its lifetime.
With this experience, we could train a decision-support system and then use this sys-
tem to assist the human user in selecting maintenance algorithms in the future. In
this paper we set out to build such a system and use it to help us to solve the problem
of choosing which maintenance algorithm to use for a given case base.

In developing such a decision-support system we have a number of decisions
to make. One decision is whether to formulate the problem as one of regression
or of classification. We could run different maintenance algorithms on a sample of
case bases and measure values such as the percentage of deletion and the difference
between the original case base classification accuracy and the accuracy of the case
base after maintenance. From this training data, we could then build a system that
uses regression to predict deletion and accuracy values for a given maintenance
algorithm and case base. Alternatively, if we could make a judgement about which
algorithm works best for a given case base, we could run different algorithms on
sample case bases and pick the best algorithm for each. From this training data, we
could then build a system that uses classification to predict which algorithm is best
to use for a given case base.

Another decision is what type of regression or classification system to use to
make the predictions. We could use, for example, a neural net, a rule-based system,
a decision tree or a CBR system.

We must decide also how we will describe case bases—both those in the training
set from which the decision-support system is built, and those that are to undergo
maintenance by an algorithm recommended by the decision-support system.

There is an obvious alternative to training a decision-support system using pre-
vious case base maintenance experience. Whenever it is deemed that a case base
requires maintenance, we could simply run all maintenance algorithms on copies of
the case base and choose whichever performs best, e.g. whichever has the highest
harmonic mean of the percentage of cases deleted and post-maintenance accuracy.
But this is only feasible if the case base is small, if the case base maintenance al-
gorithms do not take long to run and, most especially, if there is only a small, finite
number of case base maintenance algorithms. In general, however, there is a very
large number of algorithms. As we said earlier, our MACE framework defined an
infinite number. But even if we ignore the most complex algorithms that MACE
defines, it is important to realise that we are still left with a large number—more
than just the three that we use in the experiments that illustrate the feasibility of our
approach in this paper.
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Fig. 1 Maintenance algorithm selection as meta-case-based classification

Our goals in this work are to find a way to describe case bases and then to estab-
lish the feasibility of training a decision-support system for choosing a maintenance
algorithm for a given case base. Comparing different decision-support systems (re-
gression versus classification, neural nets versus rules and so on), and using more
than just three candidate maintenance algorithms, is left to future work. We focus on
the feasibility of a decision-support system that is a classifier and we use case-based
classification. We call this meta-case-based classification, since we are performing
case-based classification but doing so for case base maintenance.

In Section 2, we describe our meta-case-based classifier for case base mainte-
nance. Sections 3 and 4 describe two sets of experiments. Then Sections 5 and 6
describe related work and ideas for future work.

2 Maintenance Algorithm Selection as Meta-Case-Based
Classification

To perform meta-case-based classification, we need to assemble a case base to use
for predicting maintenance algorithms. This is a case base whose cases describe
other case bases (Figure 1). We call such a case base a meta-case base, and we
refer to the cases it contains as meta-cases. Each meta-case has a meta-problem
description and a meta-solution. The meta-problem description is made up of the
values for meta-attributes. A meta-case’s meta-solution contains the name or names
of the best maintenance algorithms (of those tested) for the case base that this meta-
case describes.
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2.1 Meta-Problem Description

Each meta-case describe a case base. Its meta-problem description comprises values
for a set of meta-attributes. The meta-attributes must characterize the case base that
the meta-case describes in a way that is likely to be predictive of the best case base
maintenance algorithm. There is a body of work that describes dataset complexity
measures, each of which characterizes a dataset in a different way. In this paper, we
explore the feasibility of using these complexity measures as the meta-attributes in
our meta-case based classifier.

Ho & Basu survey many of the geometrical dataset complexity measures [12, 13].
They divide the measures which they survey into three categories depending on what
they focus on:

Measures of overlap of attribute values: These measures look at how effective the
attributes are at discriminating between the classes.

Measures of separability of classes: These measures look at how separable the
classes are by estimating the length and linearity of the class boundaries.

Measures of geometry, topology and density of manifolds: These measures char-
acterize the position, shape, overlap and density of the manifolds that contain the
instances of each class.

Subsequently, Orriols-Puig et al. have made available DCoL, the Data Complexity
Library, which is an open-source C++ implementation of thirteen measures based
on those in the Ho & Basu survey [19].1 We have augmented these with four more,
drawing from the CBR literature: we define two from Massie et al.’s complexity
profile measure [17]; then there is Fornells et al.’s separability emphasis measure [8];
and we define another from Smyth & McKenna’s notion of case base competence
[24]. Table 1 summarizes these seventeen measures. Our four new measures are
C1, C2, N′

5 and T3. Their definitions can be found in [4]. Additionally, we found it
necessary to make changes to the definitions of five of the measures to make them
more fit for purpose. These are the ones with primes in their names (e.g. F ′

2) in
Table 1. The revised definitions can be found in [4].

Table 1 also indicates which measures can be computed for multi-class classifi-
cation datasets (where there are more than two classes) and which can be computed
on datasets whose attributes are symbolic-valued and not just numeric- or Boolean-
valued. In this paper, we use just the twelve measures that can handle multi-class
classification datasets and symbolic-valued attributes, since these are common in
CBR. However, it is possible that not all of the complexity measures may be predic-
tive of the best maintenance algorithm. Equally, two or more measures may compute
very similar properties of the case base, rendering one or more measures redundant;
to use several similar measures would give extra weight to that property of the case
base. We use feature selection as a way to choose a good subset of the measures.

There has been much research done in the area of feature selection [1, 11, 16].
There are three types of feature selection algorithms: wrapper, filter and embedded

1 http://dcol.sourceforge.net/
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Table 1 The dataset complexity measures that we use as candidate meta-attributes

Measure Description Multi-class Symbolic
F1 Maximum Fisher’s Discriminant Ratio Not DCoL No
F ′

2 Volume of Overlap Region Yes Yes
F ′

3 Maximum Attribute Efficiency Yes Yes
F ′

4 Collective Attribute Efficiency Yes Yes
N′

1 Fraction of Instances on a Boundary Yes Yes
N2 Ratio of Average Intra/Inter Class Distance Yes Yes
N3 Error Rate of a 1NN Classifier Yes Yes
L1 Minimized Sum of Error Distance of a Linear Classifier Not DCoL Not DCoL
L2 Training Error of a Linear Classifier Not DCoL Not DCoL
C1 Complexity Profile Yes Yes
C2 Similarity-Weighted Complexity Profile Yes Yes
N′

5 Separability Emphasis Measure Yes Yes
L3 Nonlinearity of a Linear Classifier Not DCoL No
N4 Nonlinearity of a 1NN Classifier Yes No
T ′

1 Fraction of Maximum Covering Spheres Yes Yes
T2 Number of Instances per Attribute Yes Yes
T3 Dataset Competence Yes Yes

[11]. Wrappers use a model to evaluate the predictive power of subsets of the at-
tributes and choose the best attribute subset according to this model. Filters instead
rely on general characteristics of the data to choose and evaluate a subset. Examples
of these characteristics include correlation between attributes and mutual informa-
tion. Embedded attribute selection methods are similar to wrappers in that they use
a model to evaluate a set of attributes. However, with embedded methods, the fea-
ture selection is built into the learning process itself, while wrappers perform feature
selection as a preprocessing step before learning takes place.

There are also three types of search strategies used by feature selection algo-
rithms: complete, sequential and random. Complete search guarantees to find the
optimal attribute subset. Sequential search gives up completeness and therefore may
miss optimal subsets, but is faster than a complete search. Random search starts with
a random subset and either continues with sequential search by adding or removing
attributes, or generates another random subset and retains the better subset.

Since the predictive accuracy of a k-NN classifier is a suitable criterion to use
to evaluate attribute subsets, we use a wrapper algorithm. We use a best-first search
algorithm (hence, sequential search), which picks the most promising complexity
measure at each point. It begins with an empty set and tests the accuracy of the
classifier using each measure as a single meta-attribute separately. The accuracy of
the classifier for each meta-attribute is measured by leave-one-out cross-validation.
On the basis of the accuracies obtained by using each as a meta-attribute, the feature
selection algorithm picks the best measure, and adds it to the empty set of selected
meta-attributes. It repeats in order to choose further measures that become meta-
attributes, stopping when there is no measure that can be added to the set of meta-
attributes to improve accuracy.
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2.2 Meta-Solution

The best maintenance algorithm or algorithms for a case base are taken to be the
meta-solution in the corresponding meta-case. In this section we look at how to
choose which maintenance algorithms are considered to be the best for a case base.

We have already acknowledged that there is an infinite number of maintenance
algorithms which can be used to maintain a case base. However, since it is not
possible to run an infinite number of maintenance algorithms on a case base to see
which one works best, we need to choose a subset of candidate algorithms on which
we base our predictions.

The set of candidate algorithms depends on what the person maintaining the case
base hopes to achieve. If the focus is on deleting noise, the candidates might only
contain noise reduction algorithms such as RENN and BBNR; if the focus is on
aggressive deletion, the candidates may be composites like RC; for more careful
and conservative deletion, candidates may be composites like CBE.

Once a set of candidate algorithms is chosen, each of the candidate algorithms
is run on a sample of existing case bases. For each case base, we then need to
decide which of the algorithms are ‘winners’ so that they can become the meta-
solution. We have already discussed the problem of deciding on the best algorithm:
an algorithm that does well in maintaining or improving accuracy may not perform
much deletion, and an algorithm that deletes a large percentage of the case base may
not maintain good accuracy. We have argued that the harmonic mean of the two
provides a good balance [5]. Therefore a good choice for the meta-solution would
be a set that contains the names of the maintenance algorithms whose resulting case
bases give the highest harmonic mean value. Alternatively, a weighted harmonic
mean can be used to bias the choice towards accuracy or deletion if either one was
more of a priority for the person maintaining the case base.

2.3 Meta-Case-Based Classification

Assume that we have taken a sample of existing case bases. We have turned each
one into a meta-case. Specifically, for each case base in the sample, we have com-
puted the values of the dataset complexity measures, which become the values of
candidate meta-attributes; we have run a set of candidate algorithms and the meta-
solution is the set that contains the case base maintenance algorithm or algorithms
with the highest harmonic mean. Then, on the meta-case base, we have run a feature
selection algorithm to decide which of the candidate meta-attributes should be used
by this classifier. Now we are ready to use this meta-case base for decision-support.

When we are presented with a case base that requires maintenance, we turn this
case base into a query for our meta-case-based classifier. First, we compute the
values of the dataset complexity measures on the case base. Obviously, we only need
to compute the values of those measures that were selected by feature selection. This
gives us the values of the meta-attributes of the query. We then use our meta-case
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base to classify the query using k-NN: k similar cases are retrieved from the meta-
case base and the predicted algorithm is the outcome of a similarity-weighted vote
among the algorithms in the meta-solutions of these k cases. The result of the vote
will be the maintenance algorithm or algorithms which the system considers to be
the best one to use for that case base.

Since all the meta-attributes are numeric-valued, we measure similarity as the
complement with respect to 1.0 of the Manhattan distance computed over the meta-
attributes, range-normalising their values to make them comparable.

3 Holdout Experiments

We took 25 classification datasets: 19 from the UCI repository [10]; plus the
Breathalyser dataset [7]; and five email datasets [6]. We divided each dataset ran-
domly into three splits: a 60% training set, a 20% cross-validation set, and a 20%
test set. We created 10 different splits of the data and we report all results as averages
over the 10 splits.

Each of the 25 training sets becomes a meta-case in a meta-case base. On each
training set, we compute the 12 complexity measures, and these are the values of the
candidate meta-attributes. We run each of the candidate maintenance algorithms—
which, in these experiments, are ICF, RC and CBE—on the training set. We record
the percentage of cases deleted. We use the cross-validation set to compute the accu-
racy of the training set after maintenance by each of the algorithms. In other words,
we take each case from the cross-validation set and treat it as a query. We present
it to a k-NN classifier that uses the training set as its case base. We compute the
percentage of the cross-validation set that the k-NN classifier correctly predicts. For
each of the maintenance algorithms, we can now compute the harmonic mean of
the percentage of cases deleted and the post-maintenance classifier accuracy on the
cross-validation set. The algorithm or algorithms with highest harmonic mean are
the best algorithms to use on this training set, and therefore a set containing these
algorithms is the meta-solution for this meta-case. We do this for each of the 25
training sets to give us 25 meta-cases in our meta-case base.

At this stage, each meta-case has 12 candidate meta-attributes, one for each com-
plexity measure. We run the feature selection algorithm on the meta-case base to
decide which of the candidate meta-attributes to use in the rest of the experiment.

We apply a similar process to each of the 25 test sets. The goal here is to create
queries that we can present to the meta-case-based classifier. It is important to keep
in mind that the queries to this classifier are not individual cases; they are case bases
that are to undergo maintenance (see Figure 1). For each test set, we compute the
values of the complexity measures. The only measures we need are those that were
selected by the feature selection algorithm previously. These become the values of
the meta-attributes of the query.

We need to know the best maintenance algorithm to use on each test set—to act
as the true class. So we run each of the candidate maintenance algorithms on the
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Table 2 Repeated holdout experiment

Algorithm Error (%) Harmonic Mean Accuracy (%) Deletion (%)
Best Possible 0 76.02 71.68 85.09
Meta-CBR 43.2 69.79 69.53 78.21
RC 24.4 74.49 68.87 87.50
ICF 79.2 62.29 69.63 64.54
CBE 88.4 60.41 72.64 57.11

test set. We note the best algorithm or algorithms, i.e. those that have the highest
harmonic mean of the percentage of cases deleted and post-maintenance accuracy
on the cross-validation set.

At this point, we have a meta-case base of 25 meta-cases, and a meta-test set of
25 case bases that are to undergo maintenance. We take each case base in the meta-
test set in turn. We present it to the meta-case-based classifier (henceforth referred
to as the meta-CBR system), which uses 3-NN to predict an algorithm in the way
described in Section 2.3.

In the experiment, we measure two things. We record the percentage of the meta-
test set that the meta-CBR system incorrectly predicts—the error rate. A correct
prediction is one in which the algorithm that the meta-CBR system predicts is the
best algorithm—or, in general, it is one in which one of the algorithms that the
meta-CBR system predicts is one of the best algorithms.

However, prediction error is not the whole story. Even if the meta-CBR system
fails to choose the best algorithm (or one of the joint best algorithms), it may choose
one that, when run, has a performance not too far below that of the best algorithm. So
for each of the 25 case bases in the meta-test set, we run the meta-CBR system’s pre-
dicted algorithm and record the percentage of cases deleted, the post-maintenance
accuracy on the cross-validation set and their harmonic mean.

The results are shown in Table 2. The Table compares the meta-CBR system to
four other options. One option is to always run the ICF algorithm, irrespective of
the characteristics of the query case base. Similarly, we can instead always run RC
or CBE. The other option (Best Possible) is a benchmark figure, which supposes we
have an oracle available enabling us to always choose the best algorithm.

We see that RC is the best algorithm—or one of the best algorithms—in 75.6% of
meta-cases and so always choosing RC gives an error rate of 24.4%. ICF and CBE
are only rarely among the best algorithms and so always choosing them gives quite
high error. Unfortunately, in terms of prediction error, in this experiment meta-CBR
is performing poorly: it gets 43.2% of predictions wrong. But, as we said, this is not
the whole story.

The results in Table 2 show that the highest possible harmonic mean value if we
chose the best algorithm every time is 76.02. The algorithm that comes closest to this
is RC, with a harmonic mean value of 74.49. Our meta-CBR classification system
results in a harmonic mean value of 69.79, which is the next highest value after RC.
What the mean hides is that our meta-CBR system results in case bases which, on
average, exhibit post-maintenance classification accuracy that is slightly higher than
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RC’s, 69.53% compared to 68.87%. But, RC deletes over 9% more cases from the
case bases on average, and this is why it ends up with the higher harmonic mean.

Always choosing CBE results in the highest classification accuracy (72.64%),
higher even than choosing the algorithm with the best possible harmonic mean,
but this is unsurprising given how conservative CBE is: it deletes by far the lowest
proposition of cases. Always choosing ICF also results in a conservative mainte-
nance strategy (although less conservative than CBE), hence its accuracy is higher
than meta-CBR’s too. But, because they delete a lower proportion of the case base,
ICF and CBE have lower harmonic means than meta-CBR.

Although our meta-CBR system does not have a higher harmonic mean than
RC, it has a higher harmonic mean than ICF and CBE. Additionally, it maintains a
good level of accuracy at just 2% lower than the best possible on average. This is a
promising result for our meta-CBR system.

There are reasons to believe that these results may not be wholly representative.
Some of the case bases that we present as queries are very small. They comprise
just 20% of their full datasets, which may themselves be small. Some of them may
even end up containing cases all of the same class. A first problem is that they may
not contain enough cases, or enough different-class cases, for the dataset complexity
measures to be informative. For example, if all cases are of the same class, then all
complexity measures should produce their lowest values. A second problem is that,
if most or all of the cases are of the same class, then this will favour RC’s aggressive
redundancy reduction, and we are seeing this in the results Table 2. Accordingly, we
decided to complement the holdout experiments with leave-one-out experiments, in
which the case bases that we present as queries are larger and much less likely to
contain cases all of the same class.

4 Leave-One-Out Experiments

In our leave-one-out experiments, we use the same splits of the 25 datasets. We
use exactly the same meta-case bases as before—constructed from the 60% train-
ing splits and having meta-solutions chosen with the assistance of the 20% cross-
validation splits. We do not need a separate meta-test set, so we can discard the
20% test splits. (We could instead have re-split the datasets into just two parts, e.g.
70% training and 30% cross-validation, or 60% and 40%, but then we would have
incurred the substantial cost of building new meta-case bases.)

In a fashion akin to classic leave-one-out cross-validation, we remove one meta-
case from the meta-case base. We present this meta-case as a query to the meta-CBR
system, which uses the remaining 24 meta-cases. We then return it to the case base.
We repeat, taking each meta-case in turn.

The advantage is that each query case base is now larger, since it was built from
60% of the original dataset, and it is less likely that it contains only cases of the
same class.

The results are shown in Table 3. In these experiments, RC is less often one of
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Table 3 Leave-one-out experiment

Algorithm Error (%) Harmonic Mean Accuracy (%) Deletion (%)
Best Possible 0 82.41 79.39 87.65
Meta-CBR 26.8 80.57 76.81 88.54
RC 35.2 80.30 76.24 88.71
ICF 70.0 74.41 74.69 78.38
CBE 94.4 62.56 77.96 54.88

the best algorithms and so always choosing it is not such a good strategy, resulting
in 35.2% error. By contrast, the performance of the meta-CBR system is much im-
proved. Its error, which was 43.2% in the holdout experiment, has fallen to 26.8%.

In these experiments, the highest possible harmonic mean value is 82.41. Our
meta-CBR system comes closest to this with a harmonic mean value of 80.57, fol-
lowed closely by RC with a value of 80.30. We also perform better than ICF and
CBE, which have harmonic mean values of 74.41 and 62.56 respectively. Meta-CBR
has post-maintenance accuracy that is just 2.6% off that achieved by using an oracle
and second only to highly conservative CBE. It deletes a slightly greater proportion
of the case base than the oracle achieves, and second only to very aggressive RC.
This is a big improvement over our holdout experiments. This shows us that our
complexity measures are more reliable and more predictive of the best maintenance
algorithm to use when they are computed for case bases which have good coverage
of the domain.

5 Related Work

The idea of meta-reasoning—reasoning about reasoning—has been explored in a
number of different areas. For example, there is an amount of research into meta-
planning [25, 27]. Within CBR, Fox and Leake [9] build a system that reasons about
CBR: it uses introspection to improve indexing in a case-based planning system.
They use a model to evaluate the performance of a case-based planner in comparison
to its expected ideal performance, and they use this model to suggest a repair when
the planner does not perform as it should.

Within machine learning and data mining, there has been an amount of research
into meta-learning, in particular training meta-classifiers that predict the best clas-
sifier to use on a dataset. For example, Lindner & Studer take an approach similar
to our own: they use a number of dataset complexity measures and other statistical
measures as their meta-attributes [15]. But their system selects classifiers, not main-
tenance algorithms. Peng et al. also use a k-NN meta-classifier to choose between a
number of classification algorithms (rather than maintenance algorithms) [20]. For
their meta-attributes, they build decision trees on datasets and compute characteris-
tics of the decision trees, such as the length of the longest branch. Bensusan et al.,
by contrast, use a representation of the decision tree itself as the description of the
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dataset [2]. Pfahringer et al. take an approach that they call landmarking, whereby
the meta-attributes come from measuring the performance of simple classifiers on
the datasets [21]. Of course, some of our dataset complexity measures also have this
character, e.g. N3, which is the error rate of a 1NN classifier.

Within CBR also, Recio-Garcı́a et al. use CBR to choose a template from a case
base of templates to aid the design and implementation of CBR systems [22] . In
particular, they describe a case-based recommender that recommends recommender
system templates from a case base of twelve templates. Van Setten [23] compares
decision-support systems built using CBR and built using decision trees that help
the user to design a hybrid recommender system. Leake et al [14] use CBR to learn
adaptation knowledge from a case base. This adaptation knowledge is stored as
adaptation cases, which are then in turn used to help the CBR system in the future.

6 Conclusions and Future Work

We have presented a meta-case-based classifier that can form the basis of a decision-
support system that assists case base administrators. It can choose a case base main-
tenance algorithm that is suited to the characteristics of a given case base at a given
point in its lifetime. A key design decision was how to characterize case bases—both
those that are described by meta-cases in our meta-case base, and incoming query
case bases that are to undergo maintenance. We have used a number of measures of
dataset complexity, which attempt to characterize the geometry of the case bases.
The actual meta-attributes that we use are chosen by a feature selection algorithm
from a large set of complexity measures.

The results of our first experiment, which used a holdout method, were promis-
ing. The meta-CBR system picked maintenance algorithms that produced case bases
that achieved slightly higher classification accuracy than always picking the RC al-
gorithm. However, always choosing RC resulted in a much larger proportion of
cases being deleted, and hence a higher harmonic mean. Similarly, compared with
selecting the best possible maintenance algorithm using an oracle, the meta-CBR
system picked algorithms that produced case bases with comparable classification
accuracy, but again was too conservative in the proportion of cases deleted.

Our second set of experiments used a leave-one-out method, enabling us to make
better use of the available data. In particular, query case bases were three times
larger than in the first experiment, and were much less likely to contain cases most
or all of which were of the same class. In this experiment, the meta-CBR system
outperformed the approach of always picking the same algorithm. For example, the
algorithms chosen by meta-CBR deleted a slightly larger proportion of cases, and
resulted in case bases with slightly higher classification accuracy, than always using
RC. This makes the point that for meta-CBR to work, the case bases need to be
large enough, and representative enough, that the dataset complexity measures are
informative. In practice, of course, this is likely to be so, otherwise the case base
administrator would not have deemed case base maintenance to be worthwhile.
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An obvious line of future research is to perform more experiments. In particu-
lar, these could use a wider range of candidate maintenance algorithms. The meta-
case base, and the incoming query case bases, could be based on a wider variety of
datasets too. In this regard, it would be particularly interesting to create meta-cases
from case bases at different points in their lifetimes, and similarly to use query case
bases also at different points in their lifetimes. Now that the feasibility of using
decision-support technology to choose a maintenance algorithm is established, a
comparison with other decision-support technologies, such as neural nets or deci-
sion trees, would be of value too.

One concern is that current maintenance algorithms delete whole subsets of the
cases in a case base. But as soon as so much as one case is deleted, it no longer
follows that the same algorithm is the best to decide on the next case to delete.
We are working on incremental versions of the case base maintenance algorithms,
which recommend the deletion of only one case at a time. We are also working on
incremental versions of some of the dataset complexity measures, whose values can
be rapidly re-calculated for a case base following deletion of a case. This will allow
us to build an incremental meta-CBR system, which will repeatedly select the best
incremental case base maintenance algorithm, which will delete one case, and then
return to the meta-CBR system to select an algorithm to delete the next case, and so
on until the system predicts there to be no advantage in deleting a further case.
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