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Abstract. Case-base administrators face a choice of many maintenance
algorithms. It is well-known that these algorithms have different biases
that cause them to perform inconsistently over different datasets. In this
paper, we demonstrate some of the biases of the most commonly-used
maintenance algorithms. This motivates our new approach: maintenance
by a committee of experts (MACE). We create composite algorithms that
comprise more than one individual maintenance algorithm in the hope
that the strengths of one algorithm will compensate for the weaknesses
of another. In MACE, we combine algorithms in two ways: either we put
them in sequence so that one runs after the other, or we allow them to run
separately and then vote as to whether a case should be deleted or not.
We define a grammar that describes how these composites are created.
We perform experiments based on 27 diverse datasets. Our results show
that the MACE approach allows us to define algorithms with different
trade-offs between accuracy and the amount of deletion.

1 Introduction

In this paper we examine the most commonly-used case-base maintenance algo-
rithms, and we present a new approach to maintenance, the MACE approach,
which uses a committee of experts to make maintenance decisions.1

Case-base maintenance has the goal of restoring a degree of efficiency to the
retrieval step of the CBR cycle by removing cases from the case-base, while, at
the same time, preserving, or even enhancing, the accuracy of the system. The
most common case-base maintenance algorithms are listed in Table 1.

As the Table shows, there are two types of case-base maintenance algorithm:
those that delete noisy (or harmful) cases, and those that delete redundant cases.
Noise reduction algorithms improve solution quality by removing cases that are
considered to have a negative effect on system accuracy. Redundancy reduction
algorithms improve system efficiency by removing cases which do not contribute
to case-base competence.

1 This material is based upon work supported by the Science Foundation Ireland under
Grant Number 05/RFP/CMS0019.



Name used Name in the
in this paper literature Description

Atomic noise reduction algorithms
RENN RENN Repeated Edited Nearest Neighbour [15]
BBNR BBNR Blame-Based Noise Reduction [5]

Atomic redundancy reduction algorithms
ICFR — Redundancy reduction phase of ICF [2]
RCR — Redundancy reduction phase of RC [10]
CRR CRR Conservative Redundancy Reduction [5]

Classic composite algorithms
RENN→ICFR ICF Brighton & Mellish’s Iterative Case Filtering [2]
RENN→RCR RC McKenna & Smyth’s algorithm [10]
BBNR→CRR CBE Delany & Cunningham’s Case-Base Editing algorithm [5]

Table 1. Atomic case-base maintenance algorithms, and classic composites

In practice, case-base maintenance algorithms are often composites, compris-
ing a noise reduction phase followed by a redundancy reduction phase. For ex-
ample, Brighton & Mellish’s Iterative Case Filtering (ICF) algorithm comprises
a RENN noise-filtering phase followed by their redundancy reduction phase [2].

The individual components of these composites have not always been tested
individually, nor have they been tested in combination with other of the algo-
rithms. For example, how does ICF’s redundancy reduction phase perform if it is
not preceded by RENN? How does it perform if it is preceded by BBNR instead
of RENN? To answer questions like these, we need to separate the composites
into their two constituent parts. This is why we have extracted the redundancy
reduction phase of the composite algorithms, naming them in the Table, and
treating them as separate algorithms. For example, ICFR is our designation for
the redundancy reduction phase of ICF.

In the next section we will analyse these algorithms in greater detail. Section 3
presents the MACE approach to case-base maintenance. Section 4 presents our
experimental methodology. Then Sections 5, 6, 7 and 8 present overall results,
results concerning noise reduction algorithms, results concerning the effect of
class boundary complexity, and results for the special case of spam, respectively.

2 Comparison of Existing Algorithms

2.1 Empirical comparisons

It is well-known that the composite algorithms in Table 1 perform differently on
different datasets (see, e.g., [2]). The results in Table 2 from our own implemen-
tations of these algorithms exemplify this.2 (Our experimental methodology is
explained in detail later in this paper, Section 4.)
2 Our implementations are publicly available as they are part of the open source

jColibri framework, http://gaia.fdi.ucm.es/projects/jcolibri/.



27 datasets Breathalyser Credit Lenses

Algorithm Del (%) Acc (%) Del (%) Acc (%) Del (%) Acc (%) Del (%) Acc (%)

RENN→ICFR 78.76 73.58 77.53 74.00 84.02 83.38 44.38 52.50
RENN→RCR 88.75 75.09 87.66 66.80 87.84 86.38 86.25 55.00
BBNR→CRR 55.31 77.67 61.95 71.20 55.90 83.62 68.13 65.00

Table 2. Results for existing algorithms with highest results highlighted

If we consider the results averaged over 27 datasets, we see that RENN→RCR
is the most aggressive and BBNR→CRR is the most conservative. Perhaps sur-
prisingly, RENN→RCR is only slightly behind BBNR→CRR in accuracy even
though it deletes over 30% more. Also, even though RENN→ICFR deletes 10%
less than RENN→RCR, it is less accurate. However, since these results are aver-
aged over 27 datasets, they hide details about individual datasets. For example,
although RENN→RCR beats RENN→ICFR in the average results, this is not
necessarily the case for each dataset.

If we look at the results from some of the individual datasets we see that
RENN→ICFR has highest accuracy on the Breathalyser dataset, RENN→RCR
on the Credit dataset, and BBNR→CRR on the Lenses dataset. On all three
datasets, RENN→RCR deletes most. RENN→ICFR deletes more than BBNR→CRR
on two of the datasets but the reverse is true for the Lenses dataset.

All of this simply serves to confirm what is well-known: in case-base mainte-
nance, there is no clear ‘winning’ algorithm. The differences in performance of
the algorithms are caused by their having different biases.

2.2 An analysis of algorithm biases

Each of the different atomic maintenance algorithms targets different types of
cases to remove. In this section, we attempt to further illustrate these biases by
looking at some scenarios in detail.

The two atomic noise reduction algorithms define noise differently. RENN
regards a case as noisy if it has a different class to the majority of its k nearest
neighbours. After each case has been checked, RENN deletes all cases that are
flagged as noisy. This is then repeated until no more cases are removed [15].
BBNR identifies and removes cases which cause other cases to be misclassified
[5]. It first classifies each case in the case-base using its neighbours. It removes
neighbours that cause misclassifications, provided their removal does not cause
cases that were previously correctly classified to become misclassified. Figures 1
and 2 illustrate scenarios which reveal biases in RENN and BBNR.

If we take k = 3, in the situation shown in Figure 1, each case has one nearest
neighbour of the same class as itself and two of the other class. This means that
the majority of the nearest neighbours of each case are of a different class and
so RENN will flag each for deletion, leaving this case-base empty after the first
deletion pass is made. This problem does not occur with BBNR because c4 does



Fig. 1. RENN problem situation

Fig. 2. BBNR problem situation

not cause any misclassification and so it will not be considered for deletion. It
will be left as the only case in the case-base after BBNR is run.

The bias is the opposite in the scenario shown in Figure 2. Here, if we take
k = 3, each of c1, c2 and c3 contributes to the misclassification of c4, but if any
of them is deleted then the others would be misclassified, so BBNR will delete
nothing. RENN will only delete c4 because it is the only case with the majority
of its k nearest neighbours of a different class.

In the case of the atomic redundancy reduction algorithms, all aim to remove
cases that do not contribute to coverage, but they differ in how they decide which
cases contribute. As a result they delete different types of cases. ICFR and CRR
both aim to retain cases on the boundaries between classes because these cases
are important for classification accuracy. ICFR removes cases that are solved by
more cases than they themselves solve [2]. CRR removes cases that solve other
cases [5]. It arranges the cases in the case-base in ascending order of how many
cases they solve. It then adds each case c to a new case-base and removes from
the original case-base any cases that c solves. RCR, however, aims to retain a
case if it is surrounded by many cases of the same class, while deleting those
that surround it [10]. It orders cases by descending relative coverage, which is
a measure of the coverage contribution of each case in relation to how much it
itself is covered. As each case is added to a new case-base, the cases that it solves
are removed from the original case-base. Given these different biases, RCR will
typically delete more cases than either ICF or CRR but this more aggressive
deletion may result in lower accuracy in datasets with complex class boundaries.

It is apparent from both our experimental results and our brief analysis of
biases that it is not the case that ‘one size fits all’ in case-base maintenance. The
question naturally arises whether novel composites, that combine algorithms
with different biases, can do better than the atomic algorithms and the classic
composites. We explore this in the next section, in which we present the MACE
approach, where maintenance is done by a committee of experts.



<System> ::= <AtomicAlgorithm> | <Sequence> | <Committee>

<AtomicAlgorithm> ::= <AtomicNoiseReductionAlgorithm> |
<AtomicRedundancyReductionAlgorithm>

<AtomicNoiseReductionAlgorithm> ::= ‘RENN’ | ‘BBNR’

<AtomicRedundancyReductionAlgorithm> ::= ‘ICFR’ | ‘RCR’ | ‘CRR’

<Sequence> ::= <System>‘→’<System>

<Committee> ::= ‘{’ <System> <System> <System>* ‘}’ 〈VotingRule〉

<VotingRule> ::= ‘S’ | ‘M’ | ‘U’

Fig. 3. The MACE approach, defined by an EBNF grammar

3 Maintenance by a Committee of Experts (MACE)

In the MACE approach, we consider each atomic algorithm to be an expert
that recommends cases for deletion. The MACE approach then defines different
ways in which these atomic algorithms combine to form novel composite case-
base maintenance algorithms. The easiest way to show how MACE forms these
composites is by giving a grammar. This grammar is shown in EBNF in Figure 3.

The grammar’s start symbol is <System>, which has three expansions:

<System> ::= <AtomicAlgorithm> In the simplest case, a maintenance sys-
tem comprises just one of the atomic algorithms. The atomic algorithms are
here divided into the noise reduction algorithms (RENN, BBNR), and the
redundancy reduction algorithms (ICFR, RCR, CRR).

<System> ::= <Sequence> A composite maintenance system may put systems
into sequence, denoted by writing an arrow between them. An example is a
classic composite such as BBNR→CRR. When we write this, we mean that
the algorithm comprises two phases, where the second (CRR) is executed
after the first (BBNR). This rule allows us to create all of the classic com-
posites but novel composites that have not previously been tested too, such
as ICFR→BBNR. (The recursion in the grammar also allows the possibil-
ity of sequences that comprise more than two algorithms, although this is a
degree of freedom that we shall not explore in this paper.)

<System> ::= <Committee> Another way to create a composite is to form a
committee (from which the MACE approach takes it name). A committee
comprises a set of two or more systems, which we write between curly braces.
Each system within a committee is executed, but cases are not deleted. If a
member of a committee would ordinarily delete a case, we treat this instead
as a vote for the deletion of that case. Committees must therefore also have
a voting rule, which we write in superscript following the closing curly brace,
which determines how votes are tallied. We explain the voting rules in the
next paragraph. An example of a committee is {BBNR, RENN}U where
each of BBNR and RENN separately proposes a set of cases to delete; and
the committee deletes each case for which the voting is unanimous (U).



We define three voting rules for committees:

Single (S): If any member of the committee votes to delete case c, then the
committee deletes c.

Majority (M): If more than half of the members of the committee vote to
delete c, then the committee deletes c.

Unanimous (U): If all of the members of the committee vote to delete c, then
the committee deletes c.

Single voting allows us to define committees that can aggressively delete large
parts of a case-base, especially if the committees’ constituents have very different
biases. For example, {BBNR, RENN}S deletes all the cases that BBNR identifies
as noisy, plus all the cases that RENN identifies as noisy. On the other hand, with
unanimous voting, we can define very conservative committees. For example, if
{BBNR, RENN}U deletes a case, we can be fairly confident that the case is
noisy since both algorithms agree.

The real power of the grammar, however, comes from the mutual recursion
in the rules. We will illustrate this with just three examples.

Since a sequence comprises two systems, and a system can be a commit-
tee, the grammar allows for sequences of committees. An example is {BBNR,
RENN}S→{ICFR, RCR, CRR}U , which first runs an aggressive noise reduction
committee, followed by a very conservative redundancy reduction committee.

Similarly, since a committee comprises two or more systems, and a system
can be a sequence, the grammar allows for committees of sequences. An example
is {RENN→ICFR, RENN→RCR, BBNR→CRR}M , which uses majority voting
of the three classic algorithms.

Finally, since a committee comprises two or more systems, and a system can
be another committee, the grammar allows for committees with sub-committees.
An example is {{RENN, BBNR}U , RCR}S , in which RCR votes alongside a
noise sub-committee.

Related work. The idea of combining techniques with different biases is not
new. In machine learning, ensembles classify new problems using each of the
classifiers in the ensemble [6, 14]. Ensembles have similarly been been used in
CBR [4, 9, 12]. Similarly, distributed CBR [13] deals with the use of multiple
case-bases and how the system works in combining these.

The work in case-based ensembles and in distributed CBR tends to imply the
use of multiple case-bases, with goals such as improved accuracy, efficiency, or
personalisation. Brodley & Friedl also use multiple case-bases (in fact, multiple
folds of the same case-base) in their approach to case-base maintenance [3]. They
split the case-base and use a classifier that is trained on one part to classify the
remaining part; they repeat this for each of several splits; and they then remove
any cases that were misclassified. This use of multiple case-bases, however, is
not a feature of the MACE approach: we are combining different algorithms.
Closest to our work is arguably Wiratunga et al [17]. We are using a committee
of maintenance experts, whereas they use a committee of adaptation experts.



Dataset Name Cases Features Classes Accuracy (%)

Balance 625 4 3 85.12
Breast Cancer Diagnostic 569 30 2 96.90
Breast Cancer Prognostic 198 33 2 71.58
Breathalyser 127 5 2 71.60
Credit Approval 690 15 2 86.92
Dermatology 366 34 6 97.75
Flags 194 28 8 52.89
Glass Identification 214 9 7 69.05
Haberman’s Survival 306 3 2 69.51
Heart Disease Cleveland 303 14 5 53.22
Hepatitis 155 19 2 80.63
Ionosphere 351 33 2 86.71
Iris 150 4 3 97.00
Lenses 24 4 3 72.50
Lettings 756 5 2 84.97
Liver Disorders 345 6 2 64.20
Lung Cancer 32 56 3 48.00
Pima Indians Diabetes 768 8 2 70.78
Post-Operative Patient 90 8 3 64.71
Spam (5 datasets) 1000 700 2 95.55
Teaching Assistant Evaluation 151 5 3 55.33
Wine 178 13 3 96.67
Zoo 101 16 7 91.50

Average over 27 datasets - - - 79.46
Table 3. Details of the datasets used in experiments

4 Experimental Methodology

Datasets. Table 3 lists the 27 datasets that we use to evaluate maintenance al-
gorithms in this paper: 20 from the UCI repository [1]; the Breathalyser dataset
[7]; the Lettings dataset [11]; and five email datasets [5]. We have datasets
of varying sizes, with different numbers of attributes and different numbers of
classes. The datasets also have varying amounts of noise and redundancy.

MACE algorithms. The MACE grammar defines an infinite set of mainte-
nance algorithms. In our experiments, we put a number of restrictions on the
sequences and committees that we created. We limited the sequences to ones
that comprise either two atomic algorithms or one atomic algorithm and one
committee, and we obviously ensured that a sequence contained distinct algo-
rithms (e.g. BBNR→BBNR is excluded). We similarly excluded duplicates from
committees, and kept the length to five or less. We allowed sub-committees,
but not sub-sub-committees, and a committee that contained a sub-committee
could only contain one other component (which was allowed to be an atomic al-



gorithm, a sequence or a sub-committee). With all of these restrictions in place,
we created 307 algorithms from the grammar for experimentation.

Methodology. For evaluation, we performed repeated holdout on each of the
datasets. Each dataset was divided randomly into three splits: a 60% training
set, a 20% test set, and a final 20% which was required for evaluation of other
systems in our research (not reported in this paper) and hence was discarded
here. We created 10 different splits of the data.

We ran each algorithm on the training set and recorded the percentage of
cases deleted. We also recorded the accuracy of the resulting case-base by using
the test set as queries and recording the percentage correctly classified. We also
recorded the accuracy before performing any maintenance to provide a bench-
mark figure. Table 3 contains these benchmark accuracies.

5 General Results

In this section, we compare overall performance, averaged over the 27 datasets.
But there is an immediate problem: case-base maintenance is a multi-objective
problem. We wish to optimise both the percentage of cases deleted, but also the
accuracy of the final case-base. This is not possible: algorithms that do well on
one of the criteria do not necessarily do well on the other. It comes as no surprise,
for example, that our experimental results show that committees with many
members and single voting delete many cases, but at a severe cost in accuracy;
the opposite is the case with committees with few members and unanimous
voting. Case-base administrators must strike a balance between accuracy and
deletion. They need ways of seeing the trade-offs, so they can make informed
decisions. We looked at two ways of presenting this.

5.1 Harmonic mean

We could present the arithmetic mean of the percentage of cases deleted and the
case-base accuracy. But this can be misleading. The arithmetic mean in the case
of an algorithm with very high accuracy and very low deletion will be similar
to the arithmetic mean in the case of an algorithm with medium accuracy and
deletion. To avoid this, we instead use the harmonic mean (Equation 1). The
harmonic mean penalises large differences between two values so that a high
mean is only produced if both individual values are high. In this way we can
find algorithms which have a high value for both accuracy and deletion.

HarmonicMean(Acc, Del) =
2×Acc×Del

Acc + Del
(1)

Table 4 shows the algorithms with the top five harmonic means. We can see
that these algorithms have high values for both accuracy and deletion.

These algorithms perform well when compared with the average accuracy
when no deletion occurs (79.46%). We can see that the algorithm with the best



Algorithm Deletion (%) Accuracy (%) Harmonic mean

{RENN, BBNR, RCR}S 90.12 74.94 81.83

RENN→RCR 88.75 75.09 81.35

{RENN, RCR}S 88.20 74.15 80.57

RCR→BBNR 89.67 72.63 80.26

{{RENN, BBNR}U , RCR}S 83.26 77.42 80.23
Table 4. Top five algorithms ordered by harmonic mean over 27 different datasets

accuracy, {{RENN, BBNR}U , RCR}S , only causes a 2% drop in accuracy while
deleting 83.26%. This seems to be a reasonable compromise.

Additionally, we can see that novel MACE algorithms are performing well.
In the top five, there are three committees, all of which are quite conservative.
There is also one novel sequence, RCR→BBNR, and one classic, RENN→RCR.
Interestingly, all five are some combination of RCR and a noise reduction algo-
rithm. On its own, the atomic RCR algorithm has much lower deletion (76.67%)
and therefore a much lower harmonic mean value (76.53). Our results show the
strength of combining algorithms in sequences and committees: the weaknesses in
RCR that cause the accuracy drop are compensated for by the noise algorithms.

A problem with this way of presenting the results, however, is that it does
not give the case-base administrator much sense of what trade-offs can be made.
For example, what does she do if she is not happy to see accuracy fall by 2%.

5.2 Pareto front

Another way to handle a multi-objective problem is to compute the Pareto
front. The Pareto front contains algorithms that are not dominated by any other
algorithms. We take one maintenance algorithm to dominate another if and only
if it both deletes more and is more accurate. This finds a set of algorithms which
are not bettered by other algorithms and which are all either equal to one another
or incomparable with one another (e.g. because one of them deletes more, but
the other has higher accuracy).

In Figure 4, we plot all 307 of our algorithms. The percentage of cases deleted
is on the x-axis, and the percentage accuracy is on the y-axis. Each point rep-
resents one algorithm: red squares are algorithms on the Pareto front; blue dia-
monds are algorithms that are dominated by those in the Pareto front.

The Pareto front in Figure 4 contains algorithms that delete everything and
hence have extremely low accuracy, and vice versa. However, it also contains
algorithms with a good balance between the two. These are very easy to identify
on the graph because we can see where accuracy begins to fall rapidly. This is
the point where 80% or more of the case-base is deleted. We have circled these
algorithms on the graph. The four algorithms we have circled are: {{RENN,
BBNR}U , RCR}S , BBNR→RCR, RENN→RCR and {RENN, BBNR, RCR}S .
Again, we can see that sequences and committees containing RCR and the noise
algorithms perform strongly.



Fig. 4. Result on 27 different datasets, highlighting the Pareto front

The advantage of the graph is that a case-base administrator can investigate
the compromises that need to be made. For example, if she wants to delete 50%
of the case-base, the graph shows that this can be done while retaining 78%
accuracy; but if she wants to delete 90%, then accuracy drops to 75%. Similarly,
if she wants to keep accuracy above 79%, the most that she can delete is about
45%. Of course, to be truly useful, the administrator needs a graph that shows
the Pareto front for her particular case-base, not an average over 27 datasets.

6 Noise-Filtering

The idea of using an initial noise reduction phase followed by a redundancy
reduction phase probably originates with Wilson et al [16]. All three classic
case-base maintenance algorithms follow suit. Here, inspired by the numerous
alternatives that the MACE approach defines, we wanted to determine how
beneficial a noise-filtering phase is. Accordingly, in Table 5, we compare all five
atomic algorithms, all three classic composite algorithms, algorithms in which
atomic redundancy reduction algorithms are paired with noise reduction algo-
rithms that they have never previously been paired with (e.g. BBNR→RCR),
and algorithms in which the noise reduction phase comes after the redundancy
reduction phase, rather than before it (e.g. RCR→RENN). In addition to aver-
ages over all 27 datasets, we look separately at the Breathalyser dataset, which
is known to be very noisy (since it was collected in Dublin pubs!), and the Lenses
dataset, which is known to be noise-free. As Table 3 shows, the accuracy of these
datasets is 79.46%, 71.60% and 72.50%, respectively without maintenance.



27 datasets Breathalyser Lenses

Algorithm Del (%) Acc (%) Del (%) Acc (%) Del (%) Acc (%)

RENN 24.27 76.57 25.84 68.80 36.25 52.50
BBNR 23.85 79.06 25.97 71.60 41.25 60.00

ICFR 60.77 74.60 61.30 66.00 40.00 67.50
RCR 76.67 76.40 77.40 70.80 63.75 72.50
CRR 35.76 77.51 41.17 72.00 32.50 72.50

RENN→ICFR 78.76 73.58 77.53 74.00 44.38 52.50
RENN→RCR 88.75 75.09 87.66 66.80 86.25 55.00
RENN→CRR 60.27 76.23 66.62 67.20 71.25 55.00
BBNR→ICFR 74.95 74.69 72.08 67.20 70.00 55.00
BBNR→RCR 84.99 75.90 85.19 66.80 80.00 65.00
BBNR→CRR 55.31 77.67 61.95 71.20 68.13 65.00

ICFR→RENN 85.43 64.20 87.79 50.80 79.38 45.00
RCR→RENN 91.65 65.46 92.60 52.00 92.50 45.00
CRR→RENN 64.95 73.35 72.73 62.40 75.63 47.50
ICFR→BBNR 81.47 72.39 80.52 59.20 76.88 57.50
RCR→BBNR 89.67 72.63 87.79 69.20 91.88 45.00
CRR→BBNR 60.46 78.20 64.68 70.00 75.63 62.50
Table 5. Results for different uses of noise reduction algorithms

Firstly we look at the atomic algorithms and their performance over the
datasets. We see that the atomic noise reduction algorithms (RENN, BBNR)
never actually improve accuracy, even on the noisy Breathalyser data (although
BBNR does maintain the same accuracy here while deleting 25.97%). We also see
that they both delete a large proportion of the Lenses dataset even though this
is noise-free, and they both cause large accuracy drops as a result. Unexpectedly,
all three atomic redundancy reduction algorithms have higher accuracy than the
noise reduction algorithms on this dataset. In fact, CRR has a higher accuracy
than RENN across the table, and only loses to BBNR on the results averaged
over the 27 datasets. RCR has similar accuracy to both RENN and BBNR on
the Breathalyser dataset while deleting over 50% more of the case-base.

Secondly, we look at the changes in accuracy and deletion when each of
the noise reduction algorithms is run before each of the redundancy reduction
algorithms. For each such algorithm, on the Lenses dataset, there is a large drop
in accuracy. This is not surprising given the fact that the atomic noise reduction
algorithms performed so badly on this dataset. For the Breathalyser dataset,
only RENN→ICFR increases accuracy; BBNR→CRR has the smallest fall in
accuracy and yet deletes the most. In the results averaged over the 27 datasets,
changes in accuracy are quite small. Using BBNR in the noise reduction phase
gives slightly less loss of accuracy than using RENN.

When we look at the deletion results, we can see that these composites do
delete more than their constituents on their own, as we would expect. Mostly,
deleting more cases lowers accuracy. But there are exceptions where accuracy



improves (e.g. RENN→ICFR on the Breathalyser dataset) and where accuracy
falls only a little while the case-base shrinks a lot (e.g. BBNR→CRR on the
Breathalyser dataset). Interestingly, these good results come from ‘classic’ algo-
rithms (RENN→ICFR, BBNR→CRR). But there are novel combinations that
are doing well on the average results, e.g. RENN→CRR, which might be worthy
of investigation on other individual datasets.

Finally, we look at the effect of switching around the sequences so that the
redundancy reduction algorithm comes before the noise reduction algorithm.
The results here are very consistent. In all situations, the resulting algorithm
deletes a greater amount than it does in the conventional ordering. On the other
hand, the resulting algorithm is always less accurate than its original with three
exceptions: CRR→BBNR is more accurate than BBNR→CRR on the averaged
data, RCR→BBNR is more accurate than BBNR→RCR on the Breathalyser
data, and ICFR→BBNR is more accurate than BBNR→ICFR on the Lenses
dataset. Of these, RCR→BBNR might be worthy of further investigation.

In summary, this analysis shows that the noise reduction phase that is used by
so many case-base maintenance algorithms is not always useful, and in some cases
may be quite detrimental to the accuracy of the algorithm. It also shows that
the three classic composite algorithms do not necessarily use the best algorithm
for their noise reduction phase, and that the best algorithm to use can change
depending on the dataset.

7 The Effect of Boundary Complexity

The complexity of the boundary between classes in a dataset may have an ef-
fect on the performance of the different maintenance algorithms. For example,
as noted previously, since RCR retains a case c if it is surrounded by cases of
the same class as c, rather than retaining boundary cases, it may cause a loss
of accuracy when boundaries are complex. To explore this idea, we computed a
boundary complexity measure on the datasets. The boundary complexity mea-
sure that we use is the intra/inter class distance ratio [8]. We looked at the two
datasets with highest complexity (Lettings and Flags) and the two with lowest
complexity (Zoo and Iris) according to this measure. For each of these datasets,
we found the top five algorithms ordered by harmonic mean. These top five
algorithms are shown in Tables 6 and 7.

We can see that the top five algorithms for the datasets with highest com-
plexity are quite similar. Almost all of them are committees of two sequences,
where the sequences comprise a noise reduction algorithm along with either
RCR or CRR. The top algorithms for the datasets with lowest complexity are
also very similar to each other, with three algorithms common to both datasets.
We can see that these algorithms are much more like the ones that did well over-
all (Section 5) containing one or both of the noise reduction algorithms along
with RCR. We also note that the top algorithms for the complex datasets are
quite different to the top algorithms for the simple datasets. Interestingly too,
the classic RENN→RCR algorithm is in the top three for both the Zoo and the



Lettings Flags

{BBNR→CRR, RENN→RCR}S {RENN→CRR, CRR→BBNR}S

{RCR→BBNR, CRR→RENN}S {RENN, BBNR, CRR}S

{CRR→RENN, RCR→BBNR}S {RENN→RCR, RCR→BBNR}U

{RENN→RCR, CRR→BBNR}S {RENN→CRR, RCR→RENN}U

{RCR→RENN, RENN→ICFR}S {CRR→RENN, RCR→BBNR}U

Table 6. Top five algorithms ordered by harmonic mean for most complex datasets

Zoo Iris

RENN→RCR {RENN, RCR}S

{RENN, BBNR, RCR}S {RENN, BBNR, RCR}S

{RENN→RCR, RCR→RENN}U RENN→RCR

{{RENN, BBNR}U , RCR}S {{RENN, BBNR}U , RCR}S

RCR BBNR→RCR
Table 7. Top five algorithms ordered by harmonic mean for least complex datasets

Iris datasets. However, it comes in 16th place for the Flags dataset, and in 52nd
place for the Lettings dataset. This suggests that there is a need for investigation
of maintenance algorithms that are suited to datasets with complex boundaries.

8 The Special Case of Spam

Spam-filtering is a task with special characteristics [5]. Of particular relevance
here are the facts that spam is heterogeneous (hence, it is a disjunctive concept),
and there is a high cost of false positives. We decided, therefore, to look sepa-
rately at how the maintenance algorithms perform on our five spam datasets.

As well as recording the percentages of accuracy and deletion for each of the
algorithms, we also recorded the rate of false positives, the rate of false negatives
and the within-class error rate (the average of the other two rates) [5]. Table 8
shows the best five algorithms, ordered by increasing within-class error rate.

We can see that the algorithms that do well on the spam datasets are quite
different from the algorithms that have done well on other datasets. BBNR
performs very strongly, with the lowest rate of error overall. It also provides
the noise removal component of all of the sequences and committees in the top
five; RENN is not contained in any of the top five. Since BBNR was developed
specifically to remove noise from spam datasets, this result is not surprising.
However, it does confirm the strength of the algorithm for this domain.

It is also interesting to note that CRR, the algorithm developed specifically
to remove redundancy from spam datasets, does not perform as strongly. It is
contained in three of the top five algorithms, but appears less often than RCR.
Also, the ‘classic’ BBNR→CRR composite comes only in 62nd place.



Algorithm Del Acc FP Rate FN Rate Err Rate

BBNR 5.84 96.16 2.64 5.02 3.82

{{CRR, RCR, ICFR}U , BBNR}S 35.58 95.86 2.42 5.84 4.14

{RCR, BBNR}U 4.54 95.64 2.46 6.26 4.36

{BBNR→CRR, BBNR→ICFR, ICFR→BBNR,
28.88 95.60 2.44 6.30 4.38

CRR→BBNR, BBNR→RCR, RCR→BBNR}U

{CRR→BBNR, BBNR→RCR}U 38.14 95.56 2.22 6.66 4.44
Table 8. Top five algorithms ordered by within-class error rate for the spam datasets

This indicates that, while the BBNR part of the composite algorithm is
well suited to spam datasets, CRR is not as well suited. In fact, it appears
that no single redundancy removal algorithm on its own deals well with the
spam datasets. The committees in the top five all contain at least two atomic
redundancy removal algorithms, if not all three. This may be due to the fact
that spam is heterogeneous; it is more difficult to be sure that spam cases are
redundant because they are distributed quite widely across the case base.

9 Conclusions and Future Work

In this paper we have investigated the most commonly-used case-base mainte-
nance algorithms and have shown their strengths and weaknesses. We presented
our MACE approach, which allows us to combine these algorithms. We investi-
gated the performance of 307 algorithms defined by MACE using 27 datasets.

Our MACE algorithms performed strongly: four of the top five algorithms
were new sequences or committees. As well as reporting the top algorithms over
the 27 datasets, we looked at three particular areas where results could be dif-
ferent. We examined the initial noise reduction phase that the classic algorithms
use and concluded that it is not always beneficial. We looked at boundary com-
plexity and the effect that this has on the maintenance algorithms. We showed
that the RCR algorithm, which works well on simple datasets, performs less
well on those with complex boundaries. We also looked at the spam domain and
showed that the BBNR algorithm does very well on this domain.

Our ongoing work consists of predicting a good maintenance algorithm for a
given dataset based on properties of that dataset. In particular, we are investi-
gating using a ‘meta-case-base’ for this task.
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