
Debiased Offline Evaluation of Active Learning in Recommender Systems

Diego Carraro and Derek Bridge
Insight Centre for Data Analytics
University College Cork, Ireland

{diego.carraro, derek.bridge}@insight-centre.org

Abstract

Active Learning (AL) when applied to Recommender Sys-
tems (RSs) aims at proactively acquiring additional ratings
data from the RS users in order to improve subsequent rec-
ommendation quality. AL strategies are typically evaluated
offline first, but the classic AL offline evaluation methodol-
ogy does not take into account the bias problem in RS offline
evaluation. This problem affects the evaluation of an RS, as
brought to light by recent literature. But, we argue, it also af-
fects the evaluation of AL strategies as well. For this reason,
in paper, we propose a new AL offline evaluation methodol-
ogy for RSs which mitigates the bias and thus facilitates a
truer picture of the performances of the AL strategies under
evaluation. We illustrate our proposed methodology on two
datasets and with three simple and well-known AL strategies
from the literature. Our experimental results differ from those
reported previously in the literature, which shows the impor-
tance of our approach to AL evaluation.

Introduction
The items that a Recommender System (RS) recommends
to its users are typically ones that it thinks the user will find
to be novel and that the user will like. If the user consumes
an item, the RS invites the user to rate it. But an RS can use
Active Learning (AL) to proactively acquire additional rat-
ings. The idea is to explicitly query the users, asking them
to rate items which have not been rated yet. The items that
a user will be asked to rate (known as the query items) are
selected ‘intelligently’ by an active learning strategy. Dif-
ferent AL strategies take different approaches to identify-
ing the query items (Elahi, Ricci, and Rubens 2016). Query
items are different from recommendations. In general, an AL
strategy should select items that it believes will be familiar
to the user, in order to get a successful response from them.
Moreover, it should select items that it believes will improve
subsequent recommendation quality.

Offline evaluation of AL strategies can help to narrow the
number of strategies that need to be evaluated in costly user
trials and online experiments. The most common method-
ology simulates the ratings elicitation process by using a

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pre-collected observed dataset, which records historical in-
teractions (e.g. clicks, purchases, ratings) between users and
items in an RS scenario. However, the RS literature shows
that observed datasets are biased due to the presence of
many confounders (Chaney, Stewart, and Engelhardt 2018;
Wang et al. 2018). For example, the way in which items are
exposed to users by the RS’s user-interface is one source of
such bias (Liang et al. 2016). The RS’s recommendations
themselves are another confounder: users are more likely to
rate recommended items than other items. Item popularity
is also a confounder: users are more likely to rate popu-
lar items (Pradel, Usunier, and Gallinari 2012). Because of
these and other confounders, ratings that are missing from
an observed dataset are Missing Not At Random (MNAR)
(Marlin et al. 2007). Despite this, most offline evaluations
of RSs, and all offline evaluations of AL strategies for RS,
assume that ratings in the observed dataset are instead Miss-
ing At Random (MAR) (Marlin et al. 2007). But treating
MNAR data as if it were MAR often leads to misinterpre-
tation of a system’s performance. In particular, it will of-
ten result in overestimates of the effectiveness of RSs that
recommend popular items or that make recommendations to
the more active users (Pradel, Usunier, and Gallinari 2012;
Cremonesi, Koren, and Turrin 2010).

In this paper, our goal is to assess the impact of bias in
the offline evaluation of AL strategies, to complement work
already done on its impact on offline evaluation of RSs only,
e.g. (Liang, Charlin, and Blei 2016; Cañamares and Castells
2018). We use a general framework for offline evaluation of
AL strategies which makes a three part split of an observed
dataset into known, hidden and test sets. We compare three
evaluation methods. In the first, corresponding to existing
evaluations of AL strategies, we do nothing to mitigate bias.
In the second, we mitigate bias in the test set; and, in the
third, we mitigate bias in both the hidden and test sets. (We
explain later why we do not also mitigate bias in the known
set.) To mitigate bias, we use a weighted sampling approach,
which enjoys low overheads and high generality.

Our experiments on two MNAR datasets show that three
simple and well-known AL strategies perform differently ac-
cording to the three evaluation methods. In particular, under
our new proposed evaluation methods, a strategy that asks

users to rate popular items has an impact on recommenda-
tion quality that is not much better than a strategy that asks
users to rate randomly-chosen items.

Related Work
Offline evaluation of active learning
In offline experiments, AL strategies are evaluated by split-
ting the dataset into three parts: the known ratings, the hid-
den ratings and the test ratings. Known ratings are the ones
from which the initial recommender model is built, i.e. the
ones we assume that the RS has at hand. The hidden rat-
ings are the ones which the simulated users might reveal to
the system if prompted to do so by the AL strategy. Sub-
sequently, these elicited ratings can be added to the known
ratings, and a new recommender model can be built. Test
ratings are used to measure the performance of the RS both
before applying the AL strategy and afterwards. Despite the
fact that this setup is widely used in the literature, e.g. (Elahi,
Ricci, and Rubens 2014), it has at least two issues, even be-
fore we consider matters of dataset bias.

First, offline evaluation of AL generally takes a user-
centric perspective and on cold-start users only, i.e. per-
formance is measured only with respect to the users that
are queried, which are the new and low-activity ones. But,
in principle, AL is a general approach for acquiring rat-
ings from any kind of user and therefore it can be used to
improve recommendations for non cold-start users as well,
e.g. (Carenini, Smith, and Poole 2003; Elahi, Ricci, and
Rubens 2014; Carraro and Bridge 2018). Moreover, espe-
cially for collaborative-filtering recommenders, where new
ratings from a subset of the users could affect the recom-
mendations made to other users in the system, measuring the
impact only on the queried users is somewhat myopic; mea-
suring also the system-wide impact of AL (i.e. the impact on
recommendations quality for all the users in the system, re-
gardless of whether they have been queried or not) gives a
more rounded perspective (Elahi, Ricci, and Rubens 2014).

Second is the issue of how to set the hyperparameters
of the AL strategies. The AL literature has little to say on
this, and so it is not clear how to perform this important step
which might heavily influence the results of the offline ex-
periment. To the best of our knowledge, only our own previ-
ous work explicitly describes in detail how to tune hyperpa-
rameters for AL in RS (Carraro and Bridge 2018).

For the reasons above, our evaluation framework is from
(Carraro and Bridge 2018), which describes a comprehen-
sive and methodological way of evaluating AL strategies.

Unbiased offline evaluation of RSs
As we have discussed, the ratings data that an RS col-
lects as part of its normal operation is MNAR data, and
not MAR data, and therefore cannot be used for unbiased
offline evaluation (Marlin et al. 2007).1 The ‘straightfor-

1In this paper, we use the terms MNAR and “biased” inter-
changeably, and the same for MAR and “unbiased”. What we refer
to as MAR, in line with papers such as (Cañamares and Castells
2018; Steck 2010), others refer to as Missing Completely At Ran-
dom (MCAR), e.g. (Schnabel et al. 2016)

ward’ approach for coping with bias in offline evaluation
of an RS is to separately collect some unbiased data and
use it as the test set. This can be done with what is some-
times called a “forced ratings approach” (Cañamares and
Castells 2018). In this approach, randomly-selected users
are required to rate randomly-selected items. Examples of
datasets collected in this way are described in (Marlin et al.
2007) and (Cañamares and Castells 2018) for the music do-
main, and in (Schnabel et al. 2016) for the clothing domain.
If a user is to rate a randomly-selected item, and if that item
is not known to her, then she must be able to quickly con-
sume it (or part of it) in order to form an opinion of it. In the
music domain, she can listen to a music track; in the cloth-
ing domain, she can look at images of the items; in the movie
domain, she can watch a movie trailer, perhaps. But in many
domains, this approach may be expensive or impracticable.

For this reason, most of the work on unbiased offline eval-
uation makes use of MNAR datasets but tries to reduce the
evaluation bias. One way to cope with the bias in an MNAR
dataset is to design an unbiased estimator, i.e. an evaluation
metric that compensates for the bias in the dataset. The es-
timators in (Steck 2010) and (Lim, McAuley, and Lanck-
riet 2015) are examples. Such estimators can indeed provide
unbiased or nearly unbiased measures of RS performance.
However, one drawback is that they might require an expen-
sive learning step. This is the case, for example, for one of
the propensity-based estimators in (Schnabel et al. 2016).

An alternative way of mitigating bias in offline evaluation
is the intervention approach. In this approach, we sample the
MNAR test set to produce a smaller test set with MAR-like
properties. For example, Liang et al. propose SKEW, which
samples ratings in inverse proportion to their item popu-
larity, thus generating an intervened test set with reduced
popularity bias (Liang, Charlin, and Blei 2016). In (Carraro
and Bridge 2020), we define an alternative intervention ap-
proach, which we call WTD, which we empirically compare
with SKEW. We demonstrate that WTD is more suitable for
approximating how an RS would perform on unbiased test
data.

In the next section, we will describe in detail how we pro-
pose to compare AL strategies in offline experiments using
MNAR data but using WTD to mitigate problems of bias.

Our Approach to Unbiased AL Evaluation
In this paper, we mitigate the bias problem in our proposed
offline AL evaluation by means of the WTD intervention ap-
proach. We will give an overview of WTD and then describe
how we use it in AL evaluation.

WTD: debiasing by weighted sampling
In this section, we give an overview of WTD, which can be
used to debias a dataset of user-item ratings (Carraro and
Bridge 2020).

We denote with u ∈ U a generic user and with i ∈ I a
generic item. We denote with D = {O ∈ {0, 1}U×I , Y ∈
RU×I} a generic observed dataset. The binary matrix O
records which ratings have been observed: Ou,i = 1 if a
rating is observed and Ou,i = 0 otherwise. We also define

the associated matrix Y ∈ RU×I , which records the value
of the ratings of the corresponding observed entries in O:
we have Yu,i 6= 0 where Ou,i = 1, Yu,i = 0 otherwise. We
also define the binary random variable O : U × I → {0, 1}
over the set of user-item pairs in O as O = 1 if the user-item
interaction is observed and O = 0 otherwise. (But later we
will use abbreviation P (O) in place of P (O = 1).)

WTD performs a debiasing intervention on MNAR data
Dmnar = {Omnar, Y mnar}. For the purposes of explaining
WTD, we will initially assume also the availability of some
unbiased MAR data Dmar = {Omar, Y mar} in addition to
the MNAR data. (But, see later, where we explain that actual
MAR data is not needed.)

WTD samples from Dmnar. The result of this interven-
tion is a dataset DS = {OS ⊂ Omnar, Y S ⊂ Y mnar},
with the objective that DS has unbiased-like properties.
Note that the sampling is totally independent from the val-
ues of the ratings in Dmnar, i.e. Y mnar. It is only depen-
dent on Omnar. To model such sampling, we denote with
S : U × I → {0, 1} the binary random variable that guides
the sampling. S = 1 when a particular user-item pair is sam-
pled from Omnar, 0 otherwise. (Again, we will use abbre-
viation P (S) in place of P (S = 1).) In practice, the sam-
pling is characterized by the expression of the probability
PS(S|u, i),∀(u, i) ∈ Omnar, which is the probability distri-
bution responsible for guiding the sampling on Omnar.

The key idea of WTD is to make the posterior probability
of each user-item pair in the sampled OS , i.e. PS(u, i|S),
approximately the same as the posterior distribution ob-
served for the corresponding user-item pair in Omar, i.e.
Pmar(u, i|O). Writing this as a formula, we want:

PS(u, i|S) ≈ Pmar(u, i|O) ∀(u, i) ∈ OS (1)
To obtain this approximation, we adjust the posterior dis-

tributions of the sampling space Omnar, i.e. Pmnar(u, i|O),
using user-item weights w = (wui)u∈U,i∈I . We denote the
modified weighted MNAR posteriors by Pmnar(u, i|O, w)
and we use w to obtain the following equality:

Pmnar(u, i|O, w) = Pmar(u, i|O) ∀(u, i) ∈ Omnar (2)

We define and calculate user-specific weights w =
(wu)u∈U and item-specific weights w = (wi)i∈I instead
of weights that are user-item specific. To save space, we will
not show how the formulae for calculating the weights are
derived; for this, see (Carraro and Bridge 2020). Instead, we
will give the formulae and an informal explanation below.

wu =
Pmar(u|O)
Pmnar(u|O)

∀u ∈ U (3)

wi =
Pmar(i|O)
Pmnar(i|O)

∀i ∈ I (4)

We can think of the calculated weights as quantities that
measure the divergence between the MNAR distributions of
the sampling space and the target MAR distribution. We di-
rectly use weights to model the sampling distribution, i.e.
PS(S|u, i) = wu(wi). (In fact, based on previous exper-
iments, we instead use PS(S|u, i) = wu(wi)

2, where we

raise the importance of the item weight relative to the user
weight.) During the sampling, the effect of the weights is
to increase or decrease the probability that a particular user-
item pair is sampled depending on how divergent are the
user and item posterior probabilities in the MNAR sampling
space with respect to MAR distributions.

Up to this point, we have assumed the availability of some
MAR-like data in order to approximate the target posteriors.
In fact, when we do not have any MAR-like data, we can still
use the WTD approach. We know that the posterior proba-
bility distribution for MAR data is uniform (Pmar(u|O) =
1/|U |, Pmar(i|O) = 1/|I|). Therefore, we can use this hy-
pothesized distribution when calculating the weights, avoid-
ing the need for a MAR-like dataset.

Which sets should we debias?
As we explained earlier, AL strategies are evaluated by split-
ting the dataset into three parts: the known ratings, the hid-
den ratings and the test ratings. We could potentially debias
any of these three sets.

Debiasing the test set It is obvious that, if we want an un-
biased evaluation, then we must, at the least, debias the test
set. To the best of our knowledge based on the literature, AL
strategies have never been evaluated offline on an unbiased
test set before.

Debiasing the hidden set In offline evaluation of AL
strategies, the hidden set has a big impact on the final per-
formance of an AL strategy. We can imagine, for instance,
that an AL strategy that asks the users to rate popular items
might have success in eliciting many ratings from the simu-
lated users in an offline evaluation if the ratings in the hid-
den set are skewed towards popular items (which is typical
in an MNAR dataset (Cañamares and Castells 2018)). But
that does not mean that the same AL strategy would perform
as well in practice. Its performance in practice will only be
similar to performance in the offline evaluation if opinions
that the user has not revealed to the system have the same
distribution as the ones in the hidden set.

A user’s unrevealed opinions are unlikely to be MAR.
Users are influenced by external confounders. For example,
a user is more likely to have opinions about items that she
has been exposed to, such as items that are popular in gen-
eral or that have been suggested by her friends. So, her un-
revealed opinions are MNAR. But a user’s unrevealed pref-
erences are also unlikely to have the same distribution as
the ratings in the RS’s observed dataset, even though this is
also MNAR. This is because, as we have discussed, the ob-
served dataset is influenced by the RS itself. The RS acts
as a source of several confounders: the user-interface makes
some items more prominent and therefore more likely to be
rated; the RS’s recommendations are more likely to be rated
than items that it does not recommend; and so on.

If we debias the hidden set, we make it more MAR-like,
which, by the reasoning of the previous paragraph, is not
necessarily correct. But if we leave it unchanged, then it is
distributed like the whole observed dataset, which, again us-
ing reasoning from the previous paragraph, is not necessarily
correct. We choose to report results from both, i.e. one set of

results where we debias the hidden set (see INT HT below)
and one set of results where we do not (see INT T below).
True performance should lie somewhere between the two.
To the best of our knowledge, our work is the only one in
the literature to explore this issue.

Debiasing the known set Finally, we could debias the
known ratings dataset also. We know that, if we build a
model on the known ratings without debiasing, then both the
model and the AL strategy will be biased; for example, the
popularity bias in the data might result in a popularity bias in
the recommended items or in the items selected as queries.
However, this paper is about evaluation of AL strategies; it
is not about the development of new AL strategies, such as
new unbiased strategies. We want to show how our improved
approach to evaluation gives more robust insights into the
performance of existing AL strategies. Therefore, in this pa-
per, we will not debias the known ratings set.

Evaluation methods
On the basis of the discussion above, we can distinguish
three evaluation methods, which differ depending on which
sets are debiased. To present them precisely, we will intro-
duce some notation.

We split the MNAR dataset Dmnar into three parts:
Kbefore (the known ratings), Hhe (the heldout hidden rat-
ings) and The (the heldout test ratings). Hhe and The are
heldout sets, used as the sampling space to generate the final
hidden and test sets, which we will designate by H and T ,
respectively. The three evaluation methods differ in how H
and T are generated, as follows:
• INT HT: In this method, we use WTD to intervene on
The to generate an unbiased test set T . The size of T will
be ρT × |The|, where ρT ∈ [0, 1] is a sampling rate. In
this method, we also use WTD to intervene on Hhe to
generate an unbiased hidden set H . The size of H will be
ρH × |Hhe|, similarly. This method aims to mitigate the
bias in both the test and hidden sets.

• INT T: This method aims to mitigate the bias in the test
set only. In this method, we again use WTD to intervene
on The to generate an unbiased test set T . But in this
method, as discussed above, we do not use WTD to debias
the hidden set,Hhe. However, to ensure a fair comparison
between INT HT and INT T, we need to make INT T’s
hidden set the same size as INT HT’s. Otherwise, differ-
ences in the results of experiments might simply be due to
INT T having a larger hidden set. Hence, in this method,
we randomly sample H from Hhe using the same sam-
pling rate ρH to produce a hidden set H .

• CLASSIC: This method corresponds to the classic way of
evaluating an AL strategy, where there is no attempt to
mitigate the bias in the dataset. To make comparisons be-
tween CLASSIC, INT HT and INT T fair, we randomly
sample from The and Hhe to get T and H using the same
sapling rates as above, ρT and ρH , respectively.
When using WTD above, we use formulae 3 and 4 but

we must calculate different weights for each different in-
tervention. For the MAR posteriors, we use the hypothe-

sized distributions that we gave earlier (i.e. Pmar(u|O) =
1/|U | ∀u ∈ U and Pmar(i|O) = 1/|I| ∀i ∈ I). For the
MNAR posteriors we use instead the following:

Pmnar(u|O) =
|Ou|
|O|

∀u ∈ U (5)

Pmnar(i|O) =
|Oi|
|O|

∀i ∈ I (6)

In the formulae above, Ou and Oi are the observed inter-
actions in O for user u and item i respectively. O is either
The or Hhe, depending on the intervention that has to be
made. For example, to produce an intervened T from The,
then O = The.

We compare these three methods using our methodology
(Carraro and Bridge 2018), which we described earlier. It
randomly selects a group of active users, i.e.UActive ⊆ U , to
whom the active learning will be applied. In the experiments
presented in the next section, we select one-third of the users
that have at least one rating in Kbefore to be active users.
Selecting a group of active users allows us to measure both
user-centric and system-wide impacts of AL (see the earlier
discussion in the related work section). For fair comparisons,
the same set of active users is used across all configurations
of the experiments.

Experiments
In the experiments that we report here, our goal is not to
find the best AL strategy. Rather, our goal is simply to show
that debiasing can affect the results, even to the extent of
changing which strategy is the best one.

We use the MovieLens 1M dataset (ML)2 and the Library-
Thing dataset (LT) (Clements, de Vries, and Reinders 2008).
Both datasets have ratings on a 1 to 5 scale in steps of 1 for
ML and steps of 0.5 for LT. For test sets, we consider a rating
to be positive if it is above 3, and negative otherwise. In or-
der to have enough data to work with (in each of the known-
hidden-test sets) and to avoid outliers, for both datasets we
discard users with fewer than 100 ratings and with more than
500 ratings.

We must train an RS on Kbefore and retrain it after we
have acquired new ratings from the simulated users. We use
Matrix Factorization with a ranking loss function (Pilászy,
Zibriczky, and Tikk 2010).3

This RS has hyperparameters. We follow the procedure
described in (Carraro and Bridge 2018) to set them. To save
space, we do not explain that procedure here.

We compare well-known and easy-to-implement AL
strategies from the literature, as follows:
• Random (RND): Candidate items are ordered randomly

and the top n are selected. These are the query items that
the active users are asked to rate.

• Popularity (POP): We score each candidate item by the
total number of ratings for that item in Kbefore . Items are
ordered by decreasing score and the top n are selected.
2https://grouplens.org/datasets/movielens/1m/
3We use the implementation from the RankSys library:

https://github.com/RankSys

Table 1: Average number of ratings per user elicited by each
strategy for different evaluation methods.

ML LT
CLASSIC

INT T INT HT CLASSIC
INT T INT HT

RND 0.32 0.33 0.02 0.02
POP 3.42 0.49 1.18 0.01
HP 4.50 2.94 2.89 0.87

• Highest-Predicted (HP) (Elahi, Ricci, and Rubens 2014):
For every active user u ∈ UActive and for each candidate
item, the Matrix Factorization RS predicts the user’s rat-
ing. Items are then ordered by decreasing predicted rating
and the top n are selected.

HP has hyperparameters (the number of latent factors and
a regularization term). Again, we follow the procedure de-
scribed in (Carraro and Bridge 2018) to set them.

Experiments are performed over 10 runs with different
random splits, whereKbefore is 60%,Hhe is 20% and The is
20% of the observed dataset. To generate H from Hhe and
T from The, we set ρH = ρT = 0.5. We set n = 50. This
is the number of query items that the AL strategy will select
for each active user. Of course, in practice it is unlikely that
an RS would ask a user for 50 ratings. Our choice of n = 50
is experimentally motivated by the fact that we need to elicit
enough ratings for there to be an appreciable change in the
performance of the RS.

Testing the quality of the recommender is the same both
before and after the new ratings are acquired. For each
method, we compute Recall, Precision and NDCG for top-
10 recommendations on T , for each user in UActive. The
three metrics show similar results and therefore, for the sake
of space, we report only results in terms of Recall.

Results
Table 1 reports the average number of ratings elicited by
each strategy per user for the different evaluation methods.
To note, CLASSIC and INT T have the same values because
they share the same Kbefore and H , hence the same sets of
ratings get elicited; CLASSIC and INT T differ only in their
test sets, which affects the Recall results below.

The results in Table 1 are similar for both datasets. As we
can see, the RND AL strategy is unaffected by whether we
debias the hidden set (INT HT) or not (CLASSIC, INT T).
But ‘intelligent’ strategies (POP and HP) are affected. These
strategies elicit more ratings per user on average when the
hidden set is not debiased (CLASSIC, INT T) than when the
hidden set is debiased (INT HT). This is what we would ex-
pect. Moreover, looking just at the results for debiased hid-
den sets (INT HT), we see that HP is the strategy which elic-
its the largest number of ratings; and we have that POP elic-
its roughly the same small number of ratings as RND. We
would expect this too, if we have successfully removed pop-
ularity bias from the hidden sets.

Tables 2 and 3 report test results on the two datasets. For
each AL strategy and for each evaluation method, we mea-

Table 2: ML dataset: Percentage change in Recall@10 after
elicitation of new ratings.

CLASSIC INT T INT HT
RND +0.22% +0.97% -0.50%
POP +9.67% +3.01% -0.27%
HP +9.45% +11.83% +10.25%

Table 3: LT dataset: Percentage change in Recall@10 after
elicitation of new ratings.

CLASSIC INT T INT HT
RND +0.63% +3.94% +0.13%
POP +5.33% +1.92% +0.31%
HP +10.18% +20.96% +11.86%

sure Recall@10 for users in UActive, both before and after
the AL step. The tables show the percentage change in the
Recall@10 achieved after the AL step so that we can observe
the impact of each AL strategy on these users. The statisti-
cal significance of the results is assessed by performing a
pairwise comparison test between the AL strategies, using a
two-tailed Wilcoxon signed rank test with p < 0.05.

The first observation is that AL improves the recom-
mender’s performance in almost all the scenarios (except for
RND and POP in INT HT on ML). This once again demon-
strates that AL helps an RS improve its recommendation
quality. For ML, HP and POP show the best improvement
over RND (by roughly 8 percentage points) according to
the CLASSIC method. However, their performances are not
statistically significantly different from each other, so they
are basically equivalent under this evaluation method. This
changes when we look at INT T and INT HT. Under these
evaluation methods, POP is no longer the ‘same’ as HP: for
INT T, POP drops to second place in the ranking (and the
differences between the three strategies are statistically sig-
nificant with respect to each other); for INT HT, POP drops
even more and its performance is now similar to RND’s (in-
deed they are not statistically significantly different from
each other). POP’s performance on INT T and INT HT can
be explained by the fact that POP acquires ratings for popu-
lar items, which might bias the RS towards popular recom-
mendations; such a recommender will perform poorly when
evaluated on a debiased test set.

For LT, the outcome is similar. Again HP is the best strat-
egy according to all three methods (and this is statistically
significant with respect to all other strategies). According to
the CLASSIC ranking, POP and RND come second and third
respectively. But this does not hold for the debiased meth-
ods, INT T and INT HT. In fact, for INT T and INT HT,
POP and RND are both at the bottom of the ranking (and
they are not statistically significantly different from each
other) and they are a long way from HP in terms of per-
centage performance improvement.

Conclusions
In this paper, we proposed a new offline experimental
methodology to evaluate the effectiveness of AL strategies

for RS. The evaluation methodology attempts to mitigate the
bias introduced by the use of an MNAR observed dataset,
which is a problem not considered by the classic evaluation
methodology widely used in the literature. We presented two
alternative methods for conducting such a debiased evalua-
tion: one debiases only the test set; the other debiases both
the test set and the hidden set. In our experiments, these two
methods reveal similar insights, and so it remains unclear
whether one should be preferred over the other.

Our experiments compare three simple AL strategies from
the literature on two widely-used MNAR datasets. Our re-
sults confirm that the HP strategy, which predicts items that
the users will like and then asks the users to rate these items,
is a good strategy. But our results show that the performance
of the POP strategy, which asks users to rate popular items,
is overestimated by the classic evaluation method used in the
literature. In the light of our findings, this suggests the need
to reconsider results presented in the literature by using in-
stead a debiased evaluation method.

The results that we are publishing here show the change
in Recall for the active users. We also have system-wide re-
sults, which show the impact of the new ratings on all users,
not just the active ones. We lack the space to show these
results, but they add further weight to our conclusions.

In our future work, we plan to use our debiased evaluation
methods to assess the effectiveness of more AL strategies.
We also want to complement the investigation reported in
this paper, by running online experiments with real users to
verify our results.

Acknowledgments
This paper emanates from research supported by a grant
from Science Foundation Ireland (SFI) under Grant Num-
ber 12/RC/2289-P2, which is co-funded under the European
Regional Development Fund.

References
Cañamares, R., and Castells, P. 2018. Should I Follow
the Crowd?: A Probabilistic Analysis of the Effectiveness
of Popularity in Recommender Systems. In Procs. of the
41st International ACM SIGIR Conference on Research &
Development in Information Retrieval, 415–424.
Carenini, G.; Smith, J.; and Poole, D. 2003. Towards More
Conversational and Collaborative Recommender Systems.
In Procs. of the 8th International Conference on Intelligent
User Interfaces, 12–18.
Carraro, D., and Bridge, D. 2018. A More Comprehensive
Offline Evaluation of Active Learning in Recommender Sys-
tems. In Procs. of the Workshop on Offline Evaluation for
Recommender Systems (Workshop Programme of the 12th
ACM Conference on Recommender Systems).
Carraro, D., and Bridge, D. 2020. Debiased offline eval-
uation of recommender systems: A weighted-sampling ap-
proach. In Procs. of the 35th ACM/SIGAPP Symposium on
Applied Computing, 1435–1442.
Chaney, A. J. B.; Stewart, B. M.; and Engelhardt, B. E.
2018. How Algorithmic Confounding in Recommendation

Systems Increases Homogeneity and Decreases Utility. In
Procs. of the 12th ACM Conference on Recommender Sys-
tems, 224–232.
Clements, M.; de Vries, A. P.; and Reinders, M. J. T. 2008.
Optimizing single term queries using a personalized Markov
random walk over the social graph. In Procs. of the Work-
shop on Exploiting Semantic Annotations in Information Re-
trieval, 18–24.
Cremonesi, P.; Koren, Y.; and Turrin, R. 2010. Perfor-
mance of Recommender Algorithms on Top-n Recommen-
dation Tasks. In Procs. of the 4th ACM Conference on Rec-
ommender Systems, 39–46.
Elahi, M.; Ricci, F.; and Rubens, N. 2014. Active Learning
Strategies for Rating Elicitation in Collaborative Filtering: A
System-wide Perspective. ACM Trans. Intell. Syst. Technol.
5(1):13:1–13:33.
Elahi, M.; Ricci, F.; and Rubens, N. 2016. A Survey of Ac-
tive Learning in Collaborative Filtering Recommender Sys-
tems. Comput. Sci. Rev. 20(C):29–50.
Liang, D.; Charlin, L.; McInerney, J.; and Blei, D. M. 2016.
Modeling User Exposure in Recommendation. In Procs. of
the 25th International Conference on World Wide Web, 951–
961.
Liang, D.; Charlin, L.; and Blei, D. M. 2016. Causal Infer-
ence for Recommendation. In Procs. of the UAI Workshop
on Causation.
Lim, D.; McAuley, J.; and Lanckriet, G. 2015. Top-N Rec-
ommendation with Missing Implicit Feedback. In Procs. of
the 9th ACM Conference on Recommender Systems, 309–
312.
Marlin, B. M.; Zemel, R. S.; Roweis, S.; and Slaney, M.
2007. Collaborative Filtering and the Missing at Random
Assumption. In Procs. of the 23rd Conference on Uncer-
tainty in Artificial Intelligence, 267–275.
Pilászy, I.; Zibriczky, D.; and Tikk, D. 2010. Fast ALS-
based Matrix Factorization for Explicit and Implicit Feed-
back Datasets. In Procs. of the Fourth ACM Conference on
Recommender Systems, 71–78.
Pradel, B.; Usunier, N.; and Gallinari, P. 2012. Ranking
with Non-random Missing Ratings: Influence of Popularity
and Positivity on Evaluation Metrics. In Procs. of the 6th
ACM Conference on Recommender Systems, 147–154.
Schnabel, T.; Swaminathan, A.; Singh, A.; Chandak, N.; and
Joachims, T. 2016. Recommendations as Treatments: Debi-
asing Learning and Evaluation. CoRR abs/1602.05352.
Steck, H. 2010. Training and Testing of Recommender
Systems on Data Missing Not at Random. In Procs. of
the 16th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 713–722.
Wang, Y.; Liang, D.; Charlin, L.; and Blei, D. M. 2018.
The Deconfounded Recommender: A Causal Inference Ap-
proach to Recommendation. CoRR abs/1808.06581.

