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ABSTRACT
Offline evaluation of recommender systems mostly relies on histor-
ical data, which is often biased by many confounders. In such data,
user-item interactions are Missing Not At Random (MNAR). Mea-
sures of recommender system performance on MNAR test data are
unlikely to be reliable indicators of real-world performance unless
something is done to mitigate the bias. One way that researchers
try to obtain less biased offline evaluation is by designing new sup-
posedly unbiased performance estimators for use on MNAR test
data. We investigate an alternative solution, a sampling approach.
The general idea is to use a sampling strategy on MNAR data to
generate an intervened test set with less bias — one in which inter-
actions are Missing At Random (MAR) or, at least, one that is more
MAR-like. An example of this is SKEW, a sampling strategy that
aims to adjust for the confounding effect that an item’s popularity
has on its likelihood of being observed.

In this paper, we propose a novel formulation for the sampling
approach. We compare our solution to SKEW and to two baselines
which perform a random intervention on MNAR data (and hence
are equivalent to no intervention in practice). We empirically vali-
date for the first time the effectiveness of SKEW and we show our
approach to be a better estimator of the performance one would
obtain on (unbiased) MAR test data. Our strategy benefits from
high generality properties (e.g. it can also be employed for training
a recommender) and low overheads (e.g. it does not require any
learning).
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1 INTRODUCTION
Offline evaluation of a recommender system is done using an ob-
served dataset, which records interactions (e.g. clicks, purchases,
ratings) that occur between users and items during a given period
in the operation of the recommender system. However, this dataset
is biased, not only due to the freedom that users have in choosing
which items to interact with, but also due to other factors, known
as confounders ([5, 27]). For example, the user-interface plays an
important role: differences in the ways that items are exposed to
users (e.g. position on the screen) influence the likelihood of a user
interacting with those items [14]. The recommender itself sets up a
feedback loop, which results in another confounder: users are typi-
cally more likely to interact with the recommender’s suggestions
than with other items. The user’s preferences are also a confounder:
for example, Marlin et al. demonstrate that, in a dataset of numeric
ratings, the probability of not observing a specific user-item interac-
tion depends on the value associated with that particular interaction
(i.e. the rating value): informally, users tend to rate items that they
like [18]. Because of these and other confounders, interactions that
are missing from an observed dataset are Missing Not At Random
(MNAR) [18].

Classical offline evaluations using such an observed dataset are
in effect making the assumption that interactions that are missing
from the observed dataset are eitherMissing Completely At Random
(MCAR) or Missing At Random (MAR) [18]. (For the distinction
between MCAR and MAR, see Section 2.) Using MNAR data in an
evaluation as if it were MCAR orMAR, results in biased estimates of
a recommender’s performance [18]: for example, such experiments
tend to incorrectly reward recommenders that recommend popular
items or that make recommendations to the more active users
[8, 21].

There are three ways of addressing this problem. The most
straightforward approach (in theory, at least) is to collect and em-
ploy a MAR dataset instead of an MNAR one for the offline eval-
uation. Using (unbiased) MAR data for the evaluation would give
an unbiased estimate of the recommender’s performance. In some
domains, there are ways of collecting small MAR-like datasets (see
Section 2). But, in many domains it is either impractical or too
expensive to obtain MAR-like datasets.

Because of the difficulty of collecting MAR-like data, the other
two ways of addressing the problem focus on using MNAR data
(which is usually available and in larger quantities) butmitigating its
bias. One way of doing this is to design estimators (i.e. evaluation
metrics) which compensate for the bias in the MNAR test data.
Although this achieves the desired goal to some extent, unbiased
estimators suffer from two potential drawbacks. The first is that
they may not be general enough to overcome all sources of bias,
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i.e. they are often designed to compensate for a specific kind of
bias: for example, the accuracy metric that is proposed in [24] is
able to correct only for the long-tail popularity bias in a dataset.
The second drawback that affects unbiased estimators is that their
unbiasedness might be proven only if the data satisfies some specific
conditions: the ATOP estimator proposed in [23], for example, is
unbiased only if the data satisfies two conditions.

The third approach is to intervene on MNAR test data before
using it for the evaluation. In practice, such intervention is per-
formed by means of a sampling strategy which samples from the
available MNAR test data. The sampling strategy is chosen so that
the intervened test set which results from the sampling is supposed
to be less biased (more MAR-like) and therefore more suitable for
evaluation of the recommender’s performance. One such sampling
strategy is known as SKEW [13]: it samples user-item interactions
in inverse proportion to item popularity, thus producing test data
with reduced popularity bias.

In this paper we investigate a new alternative to the SKEW
sampling strategy for generating intervened data. We propose a
weighted sampling strategy in which the weights are calculated by
considering the divergence between the distribution of users and
items in the MNAR data and their corresponding target (unbiased)
MAR distributions.

We compare our sampling approach with SKEW. Our experi-
ments allow us: to empirically evaluate for the first time the ef-
fectiveness of SKEW; to verify that both strategies successfully
perform the desired debiasing action; but also to demonstrate that
our strategy more closely approximates the unbiased performances
of different recommender algorithms.

Although in this paper we employ our technique to generate a
test set for offline recommender evaluation, our approach is general
and can also be employed to debias the data used for training a
recommender.

The rest of this paper is organized as follows. Section 2 presents
related work. In Section 3, we propose a probabilistic framework
to study properties of MAR and MNAR datasets. In Section 4 we
use the properties presented in Section 3 to derive our weighted
sampling strategy, which is used to generate intervened test sets.
Section 5 describes the experiments we have run to assess the effec-
tiveness of our approach. We analyse the results of the experiments
in Section 6. We discuss our findings in Section 7.

2 RELATED WORK
A distinction is sometimes drawn between Missing Completely At
Random (MCAR) and Missing At Random (MAR). The distinction
is based on missing data analysis theory and is first proposed by
[16] and later introduced into the recommender systems litera-
ture by [18]. Indeed, MCAR, MAR and MNAR are terms used to
denote different missing data mechanisms which describe the pro-
cess that generates the observation pattern in the data. In work on
causal inference, the same process is typically called the assignment
mechanism instead [10]. In [16, 18], MCAR means that whether a
user-item interaction is missing does not depend on interaction
values (such as ratings in a recommender) at all, i.e. it depends nei-
ther on the observed interaction values nor the missing interaction

values. MAR, on the other hand, means that whether a user-item in-
teraction is missing may depend on the observed interaction values,
but is independent of the missing interaction values.

In this paper, we use MNAR and MAR in a more informal and
general way. We use MNAR to indicate that data is biased (missing
interactions depend on some confounders in the data), and we use
MAR to mean that data is unbiased (missing interactions do not
depend on any confounder in the data, whether it is observed or
not). Although these more informal usages are not properly in line
with the categorization in [16] and [18], our choice is broadly in
line with other work in the recommender systems literature: what
we refer to as MAR is also called MAR in papers such as [4, 23] and
what we call MAR is referred to as MCAR in, e.g., [22].

A substantial body of work has been done in the last few years
to cope with bias in recommenders, both for their training and their
offline evaluation. We focus here more on the latter, as it is more
relevant to our work in this paper.

As we mentioned in Section 1, one approach is to collect a sepa-
rate MAR-like dataset (i.e. one that is as devoid of bias as possible)
to use for the evaluation of the recommender’s performance. This
is usually done by means of what we will call a “forced rating
approach” [4]. User-item pairs are chosen uniformly at random
and for each user-item pair that gets selected the user is required
(forced) to provide a rating for the item. In this way, from the data
that we collect we remove biases such as the item discovery bias
(because items are randomly chosen for users), item consumption
bias (because users are forced to consume or interact with the item
so that they can rate it, unless the item was already known to the
user) and rating decision bias (because users are not free whether
to rate the chosen item or not, they are forced to do it) [4].

Datasets collected by the “forced rating approach” are MAR-like,
rather than MAR: they may still carry some bias. When building
such a dataset, for example, although invitations are sent to users
who are chosen uniformly at random, those who agree to participate
may be atypical, thus introducing bias. Equally, the fact that, for
each user, items to rate are presented sequentially introduces bias:
the rating a user assigns to a particular item may be influenced
by the items she has rated so far. Although this means that these
datasets are less biased, rather than unbiased, to the best of our
knowledge, this is still the best way of collecting this type of data.

Datasets of this kind include Webscope R3 [18] and cm100k [4]
in the music domain, and CoatShopping [22] in the clothing domain.
The “forced rating approach” can only work in certain domains; for
example, it requires that a user who is presented with an item can
quickly consume that item so as to provide a rating. In the movie
domain, for example, we almost certainly cannot require a user to
watch an entire movie (although we could require them to watch a
movie trailer).

Therefore, because in some domains obtaining aMAR-like dataset
may be impractical, most work on unbiased offline evaluation of
recommenders still relies on the use of MNAR datasets. The major-
ity of the literature tries to overcome the bias in an MNAR test set
by proposing new estimators (i.e. evaluation metrics) which pro-
vide unbiased or nearly unbiased measures of performance on the
MNAR test data. Steck describes ATOP, for example, a new ranking
estimator which is unbiased under specific mild assumptions about
the data employed [23, 25]. Steck also proposes an accuracy metric
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that is able to correct for the long-tail popularity bias in the data,
resulting in a nearly unbiased estimate of the true accuracy under
the assumption that no other confounders besides the so-called
popularity bias occurs [24]. There is work too on unbiased estima-
tors for implicit MNAR data. An example of this appears in [15],
where the authors proposed a missing data model and a novel eval-
uation measure, i.e. Average Discounted Gain (ADG), built upon
the widely used NDCG metric. They show ADG allows unbiased
estimation with respect to their missing data model, unlike NDCG.
Other work uses Inverse-Propensity-Scoring (IPS) techniques (e.g.
[22, 28]). A propensity is the probability that a particular user-item
pair is observed. This work on IPS uses propensities as a proxy to
build unbiased estimators on explicit ([22]) and implicit ([28]) data
respectively. One drawback of propensities is that their estimation
might require an expensive learning step (e.g. [22, 28]).

There are those who use what we are calling an intervention
approach. They sample from theMNAR test set to produce a smaller
MAR-like test set (the intervened set), which they use in the eval-
uation in place of the MNAR test set. One such method is Lang
et al.’s SKEW method, which samples user-item pairs in inverse
proportion to the item popularity. This generates an intervened test
set which has roughly uniform exposure distribution across items,
thus reducing the item popularity bias in the test set [13]. Lang et
al. in [13, 27] and Bonner et al. in [3] use this technique for test
set generation to evaluate causal approaches to recommendation.
However, none of the three works that we have just cited either
explain or verify empirically why SKEW should be effective as a
debiasing technique. In this paper we fill the gap by providing such
contributions. Also, because of the similarity with our work, we use
SKEW as a state-of-the-art strategy to compare against our own
approach.

Bellogin et al. also sample an MNAR dataset to try to obtain a
fairer evaluation [2]. Their first approach is a form of stratification,
in which test items are sampled from a popularity-based partition
of the data. Their second approach builds a test set with the same
number of ratings for each item. Compared with our work, their
approaches are more limited since both have the goal only of re-
ducing popularity bias. Their approaches may also result in quite
small tests sets, especially if the popularity curve in the original
dataset is quite steep.

To conclude this review, and for completeness, we mention some
of the work that has applied debiasing techniques when training
recommender systems. In [9, 12, 17], for example, existing algo-
rithms are adapted to include explicit MNAR data models. Others
employ unbiased estimators as a loss function to train their model
and therefore correct for the bias in the training set (e.g. [15, 23, 24]),
while others take a causal inference perspective (e.g. [11, 13, 14, 26]).

3 PROPERTIES OF DATASETS: A
PROBABILISTIC FRAMEWORK

In this section, we define a probabilistic framework to analyse
properties of MAR and MNAR datasets. Then, in Section 4, we use
these properties to design our approach that generates intervened
test sets for ‘unbiased’ evaluation.

We consider a user-item space,U × I , of size |U | · |I |. We denote
with u ∈ U = {1, .., |U |} a generic user and with i ∈ I = {1, .., |I |}

a generic item. We denote with D = {O ∈ {0, 1}U×I ,Y ∈ RU×I }

a generic observed dataset. The binary matrix O records which
interactions between users and items have been observed:Ou ,i = 1
if an interaction is observed andOu ,i = 0 otherwise. We also define
the associated matrix Y ∈ RU×I which records the value of the
interactions of the corresponding observed entries in O : we have
Yu ,i , 0 where Ou ,i = 1, Yu ,i = 0 otherwise. When discussing Y ,
we use the general term “interaction value”, rather than “rating”,
to emphasize the generality of our framework: Y can take values
of any kind in R whether they denote ratings, number of clicks,
number of views, listening frequencies, etc. We also define the
binary random variable O : U × I → {0, 1} over the set of user-item
pairs in O as O = 1 if the user-item interaction is observed and
O = 0 otherwise. (But later we will use abbreviation P(O) in place
of P(O = 1).) Using this notation, we can refer to two kinds of
datasets over the sameU × I space, Dmnar = {Omnar ,Ymnar } and
Dmar = {Omar ,Ymar }, which have MNAR and MAR properties
respectively.

3.1 Properties of a MAR dataset
We will formally describe how Dmar is generated. We make use of
the forced ratings approach that we described in Section 2. First,
we need to randomly sample a set of user-item pairs in order to
generate Omar . Then, a preference (interaction value) for each
pair in Omar is collected so that Ymar is obtained. Note that, in
order to satisfy the MAR property, the generation ofOmar is totally
independent fromYmar and from the particular user-item pair (u, i)
as well. We also assume that, once Omar is determined, we can
obtain interaction values Ymar for all user-item pairs in Omar . (In
practice, of course, users may decline the invitation to participate
or may refuse to give some ratings, which is one reason why in
reality these datasets are MAR-like and not MAR.)

To achieve the goal, we make use of the probability distribution
Pmar (O|u, i), defined over the space U × I , that leads to Omar . A
straightforward choice is to set Pmar (O|u, i) = P(O) = ρmar , where
ρmar represents the desired ratio of observed entries from U × I .

Now, assuming that a dataset Dmar has been collected using
such an approach, we should empirically verify that user and item
posterior probabilities are (roughly) uniformly distributed:

Pmar (u |O) =
|Omar
u |

|Omar |
≈

1
|U |

∀u ∈ U (1)

Pmar (i |O) =
|Omar

i |

|Omar |
≈

1
|I |

∀i ∈ I (2)

where Omar
u and Omar

i are the observed interactions in Omar for
user u and item i respectively.

Also, because users and items are drawn independently, we have
that their posteriors are independent and we can write:

Pmar (u, i |O) = Pmar (u |O)Pmar (i |O) ≈
1

|U | |I |
∀(u, i) ∈ U×I (3)

for the joint posterior of a specific user-item pair.

3.2 Properties of an MNAR dataset
MNAR data is, of course, usually collected during the operation of
a recommender system. But, similarly to the way we modelled the

1437



generation of MAR data, we can model the generation of a MNAR
dataset Dmnar = {Omnar ,Ymnar } in terms of a drawing process
which determines Omnar first and Ymnar subsequently.

Differently from the MAR scenario, due to the presence of bias,
we cannot assume the sampling distribution Pmnar to be indepen-
dent from the interaction values Ymnar (or from other confounders
too, including, e.g., the specific user and item (u, i)). In other words,
in anMNAR dataset the draw is generally guided by some unknown
probability Pmnar (O|u, i,Y ,X), where Y ⊃ Ymnar represents the
complete set of user-item interactions and X represents a set of
features (covariates, confounders) which influences the sampling
probability (e.g. user demographics, item features, characteristics
of the system such as the way it exposes items to users, and so on).

If a MNAR dataset Dmnar has been collected, we can examine
user and item posterior probabilities in Omnar , as we did for the
MAR dataset but now, in general, we will find:

Pmnar (u |O) =
|Omnar
u |

|Omnar |
,

1
|U |

∀u ∈ U (4)

Pmnar (i |O) =
|Omnar

i |

|Omnar |
,

1
|I |

∀i ∈ I (5)

In general, the users and items are not uniformly distributed and
thus, given that a specific entry is observed, i.e. O = 1, we cannot
assume the user and item posterior independence for the joint
posterior Pmnar (u, i |O), i.e.

Pmnar (u, i |O) , Pmnar (u |O)Pmnar (i |O) ∀(u, i) ∈ U × I (6)

However, the formulation that we have given here provides us
with a solid framework to design our debiasing strategy in the next
section.

4 INTERVENED TEST SETS
To conduct unbiased evaluation from biased data, we generate and
use intervened test sets in place of classical random heldout test
sets. We begin by presenting this approach in general (Section 4.1),
and then we present the specifics of our approach (Sections 4.2 and
4.3).

4.1 The sampling approach
The sampling approach consists in performing a debiasing inter-
vention on MNAR data Dmnar by means of a given sampling strat-
egy, denoted with S . The result of the intervention is the dataset
DS = {OS ⊂ Omnar ,Y S ⊂ Ymnar }, with the objective that DS has
unbiased-like properties. We follow the same reasoning adopted to
study properties of MAR and MNAR datasets. Thus, we generate
OS first and then we obtain Y S accordingly.

The sampling is performed on the space Omnar , ignoring in-
teraction values in Ymnar . We denote with S : U × I → {0, 1}
the binary random variable that guides the sampling. S = 1 when
a particular user-item pair is sampled from Omnar , 0 otherwise.
(Again, we will use abbreviation P(S) in place of P(S = 1).) In prac-
tice, a particular strategy S is characterized by the expression of
the probability PS (S|u, i),∀(u, i) ∈ Omnar , which is the probability
distribution responsible for guiding the sampling on Omnar . We
present our sampling approach in the next subsection. In Section 5,

we will also define PS for SKEW and for two baseline approaches
that we compare against in the experiments.

4.2 Our approach: weights for the sampling
In the presentation of our approach, we will start by assuming the
availability of some MAR-like data Omar in addition to MNAR
data Omnar . In fact, we will see in Section 4.3 that we can use our
approach even in cases where we do not have any MAR data.

Our main idea is to make the posterior probability distribution
of each user-item pair in the sampled OS , i.e. PS (u, i |S), approxi-
mately the same as the posterior probability distribution observed
for the corresponding user-item pair in Omar , i.e. Pmar (u, i |O). In
other words, we want to make OS similar to Omar in terms of its
posteriors. Writing this as a formula, we want:

PS (u, i |S) ≈ Pmar (u, i |O) ∀(u, i) ∈ OS (7)
To obtain this approximation, we adjust the posterior distribu-

tions of the sampling space Omnar , i.e. Pmnar (u, i |O), using user-
item weightsw = (wui )u ∈U ,i ∈I (similarly to [19]). We denote the
modified weighted MNAR posteriors by Pmnar (u, i |O,w). The goal
is to find weightsw so that:

Pmnar (u, i |O,w) = Pmar (u, i |O) ∀(u, i) ∈ Omnar (8)
From the fact that a typical MAR dataset is uniformly distributed

over users and items, we use the independence of formula 3 to
re-write the right-hand side of formula 8 to obtain:

Pmnar (u, i |O,w) = Pmar (i |O)Pmar (u |O) ∀(u, i) ∈ Omnar (9)

Similarly to formula 6 which considers user and item MNAR
posteriors, user and item weighted MNAR posteriors will not in
general be independent. However, we are going to treat them as if
they were independent, to obtain the following:

Pmnar (u, i |O,w) = Pmnar (i |O,w)Pmnar (u |O,w) ∀(u, i) ∈ Omnar

(10)
While formula 10 is not true in general, we justify it by showing

empirically in Section 6 that it does obtain good results.
Now, using 10, we can split formula 9 into the two following

equations:

Pmnar (u |O,w) = Pmar (u |O) ∀u ∈ U (11)

Pmnar (i |O,w) = Pmar (i |O) ∀i ∈ I (12)
As a consequence of formulas 11 and 12 for the weighted MNAR

posteriors, we can define and calculate user-specific weightsw =
(wu )u ∈U and item-specific weightsw = (wi )i ∈I instead of weights
that are user-item specific.1

We propose the most straightforward solution to model the
weightedMNAR posteriors, i.e. Pmnar (.|O,w) = w .Pmnar (.|O). We
plug this into formulas 11 and 12 and we obtainwuPmnar (u |O) =
Pmar (u |O), wiPmnar (i |O) = Pmar (i |O) for each user and item
1Having independent user and item weights also has an advantage in terms of scala-
bility. We need to calculate only |U | + |I | weights instead of |U × I |. This is good for
scalability because |U × I | >> |U | + |I | for the values of |U | and |I | that we find
in recommender domains.
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weighted distribution respectively. Simply reversing these last two
formulas, we have the expressions for calculating the weights:

wu =
Pmar (u |O)

Pmnar (u |O)
∀u ∈ U (13)

wi =
Pmar (i |O)

Pmnar (i |O)
∀i ∈ I (14)

We can think of the calculated weights as quantities that measure
the divergence between the MNAR distributions of the sampling
space and the target MAR distribution. Because a specific weight ad-
justs the correspondingMNAR distribution, we directly use weights
to model the sampling distribution, i.e. PS (S|u, i) = wuwi . During
the sampling, the effect of the weights is to increase or decrease the
probability that a particular user-item pair is sampled depending
on how divergent are the user and item posterior probabilities in
the MNAR sampling space with respect to the MAR distributions.

In fact, based on preliminary experiments, we use PS (S|u, i) =
wu (wi )

2 instead. This variant, denoted by WTD in the rest of this
paper, raises the importance of the item-weight relative to the user
weight. Specifically, (wi )

2 will be bigger than wi if wi is greater
than one, and (wi )

2 will be smaller than wi if wi is less than one.
This choice makes sense in the light of previous research reported
in the literature which identifies item popularity as one of the most
impactful confounders in MNAR data, e.g. [21, 24].

4.3 Hypothesized distributions for the weights
Up to this point, we assumed the availability of some MAR-like data
in order to give us the posteriors that we need to approximate. But
MAR-like data is expensive or impossible to collect, as we discussed
when presenting the “forced rating approach” earlier. Furthermore,
in those cases where we do have a reasonable amount of MAR-like
data at hand, we could use it directly as an unbiased test set. Using
it to calculate weights so that we can intervene on MNAR data to
produce a more MAR-like test set would then be pointless.

In fact, when we do not have any MAR-like data, we can still use
our approach. We know that the posterior probability distribution
for MAR data is uniform (Pmar (u |O) = 1/|U |, Pmar (i |O) = 1/|I |),
and this is all we need for our sampling approach. Therefore, we can
use this hypothesized distribution when calculating the weights,
avoiding the need for a MAR-like dataset. We call this strategy,
WTD_H (where the H stands for “hypothesized”).

5 EXPERIMENTS
We have assessed WTD and WTD_H in offline experiments, which
we describe in this section.

5.1 Datasets
We use two publicly available datasets: CoatShopping2 from the
clothing domain [22] and Webscope R33 from the music domain
[18]. Both of them are ideal for our purposes because they are
composed of two parts, one having MAR properties (Dmar =

{Omar ,Ymar }), and the other having MNAR properties (Dmar =

{Omnar ,Ymnar }). For both of them, interactions are in the form
of ratings, so that Y ∈ {1, 2, 3, 4, 5}U×I . We consider a rating to be
2Available from https://www.cs.cornell.edu/~schnabts/mnar/
3Available on request from https://webscope.sandbox.yahoo.com

Table 1: Dataset statistics

CoatShopping Webscope R3
MAR MNAR MAR MNAR

# ratings 4640 6960 54k 129k
# users 290 290 5400 5400
# items 300 300 1000 1000

avg # ratings per user 16 24 10 23
avg # ratings per item 15 23 54 129

avg rating 2.22 2.61 1.81 2.87
sparsity 0.94 0.92 0.99 0.97

positive if it is above 3, and negative otherwise. Both the Dmar
parts are collected using the forced ratings approach described ear-
lier, therefore they are almost but not completely unbiased, for the
reasons we gave earlier. The Dmnar portions are collected during
the operation of a recommender system. Note that we did mention
earlier that we know of one other MAR-like dataset, collected by the
forced ratings approach, namely cm100k from the music domain
[4], but we cannot use this in our experiments because it does not
have any corresponding MNAR data.

For each dataset, we apply a preprocessing step to ensure both
Dmar and Dmnar having a common user-item spaceU × I : specifi-
cally, we keep those users and items that belong to the intersection
of the two portions. Table 1 gives statistics of the final resulting
datasets that we used in the experiments.

5.2 Methodology
The goal of the experiments is to assess the ‘goodness’ of different
ways of producing intervened test sets. The measure of ‘goodness’
is how much results obtained by evaluating a recommender on
an intervened test set resemble the results we would obtain on an
unbiased test set.

In order to do that, in our experiments, we randomly splitOmnar

in each dataset into a training set Otr and a heldout set Ohe with
proportions 60%-40% respectively. Since the split is random, MNAR
distributions are preserved. For both of them, we take the corre-
sponding ratings from Ymnar and we produce Y tr and Yhe . Yhe is
what one would use as a traditional test set. In our case, we useOhe

as the sampling space: we sample it to obtain intervened test sets.
There is one intervened test set per sampling strategy (REG, SKEW,
WTD, WTD_H, explained in Section 5.3). We make the REG, SKEW,
WTD, WTD_H intervened test sets to be 50% of the size of Ohe .
(Smaller values than 50% can result in intervened test sets that are
too small to give reliable results; larger values than 50% can mean
that intervened test sets are not appreciably different from Ohe .)

We also randomly split Omar into three, i.e. Ow , Oval and Oдt

with proportions 15%-15%-70% respectively. Since the split is ran-
dom, MAR distributions are preserved. We obtain Yw , Yval and
Yдt accordingly, as before. Ow is used to calculate the weights for
WTD (see Section 5.3 for more details of the calculation). We use
Yval as the validation set to optimize recommender system hyper-
parameter values (Section 5.4). (In reality, the ratings one would
use to optimize hyperparameter values would either be a portion
of Y tr or a portion of an intervened test set produced from Yhe .
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We decided it was better in the experiments that we report in this
paper to minimise the effect of hyperparameter selection on our
results. Hence, we selected hyperparameter values using ‘unbiased’
data, Yval .)

We use Yдt as an unbiased test set. In other words, the perfor-
mance of a given recommender on Yдt can be considered to be
its “true”, unbiased performance (the ground-truth). We want the
performance of a recommender on an intervened test set to be close
to its performance on this unbiased test set. The best intervention
strategy is the one that produces test sets where performance most
closely resembles performance on Yдt .

We train the five recommender systems presented in Section 5.4
using ratings in Y tr . Each recommender produces a ranked list of
recommendations which are tested on the unbiased test set Yдt and
the intervened test sets. We have computed Precision, Recall, MAP
and NDCG on the top-10 recommendations. Results are averaged
over 10 runs with different random splits.

5.3 Sampling strategies
We formally present here the sampling strategies that we use to
produce the intervened test sets in our experiments. Each strategy
samples an intervened test setOS fromOhe (and the corresponding
ratings fromYhe , i.e.Y S ). For each strategy we give the correspond-
ing probability sampling distribution, i.e. PS (S|u, i). In addition to
SKEW, WTD and WTD_H, we also employ two baselines. REG is a
random sample from Ohe , corresponding to an intervention that
does not try to compensate for bias. FULL represents the classi-
cal test set generation in the evaluation, where the test set is Ohe

(therefore no intervention).

• FULL: PS (S|u, i) = 1 so that Ohe is fully sampled and no
intervention is performed.

• REG: PS (S|u, i) = 1/|Ohe |. Every (u, i) has a constant proba-
bility to be sampled and we obtain a test set that is a random
subset ofOhe . We would expect this to behave very similarly
to FULL.

• SKEW: PS (S|u, i) = 1/pop(i), where pop(i) counts the num-
ber of ratings that item i has in Otr [3, 27].

• WTD, WTD_H: PS (S|u, i) = wu (wi )
2. These are the two

alternatives of our approach, presented in Sections 4.2 and
4.3. Weights are calculated using formulas 13 and 14. WTD
uses formulas 1 and 2 to calculate the actual MAR posteriors
from Ow . WTD_H uses the hypothesized MAR posteriors
instead. They both use formulas 4 and 5 to calculate exact
MNAR posteriors from Otr .

Note that, in each of SKEW,WTD andWTD_H, if the distribution
PS does not sum to 1 (necessary for a probability distribution), we
include a normalization step on PS to ensure that this property is
achieved.

5.4 Recommender systems
We train five recommender models, all of them producing a ranked
list of recommended items. AvgRating and PosPop are non-person-
alized recommenders which rank items in descending order of
their mean rating and number of positive ratings in the train-
ing set, respectively. UB_KNN and IB_KNN are user-based and

item-based nearest-neighbour algorithms [8]. MF is the Matrix
Factorization algorithm proposed by Pilaszy and Tikk [20]. For
UB_KNN, IB_KNN and MF we use the implementations available
in the RankSys library4. We used our own implementations of
AvgRating and PosPop.

The UB_KNN, IB_KNN and MF algorithms have hyperparame-
ters. We select hyperparameter values that maximize Recall for top-
10 recommendations on Yval (Section 5.2). For UB_KNN, IB_KNN,
we choose the number of neighbors from {10, 20, .., 100}. For MF,
we choose the number of latent factors from {20, 40, .., 200} and
the regularization term from {0.001, 0.006, 0.01, 0.06, 0.1, 0.6}.

6 RESULTS
We report the results of our experiments in Table 2. For each recom-
mender, we show its ground-truth Recall@10 performance on the
unbiased test set Yдt and the relative performance (in terms of per-
centage difference) for the baselines and intervened test sets with
respect to this ground-truth. Results for Precision, NDCG and MAP
are omitted because the percentage differences are very similar to
the Recall ones.

Results for CoatShopping show that the baselines and all in-
tervened test sets overestimate ground-truth performances for all
recommenders with just one exception: PopPos on WTD_H. In
general, our new approaches are superior in approximating ground-
truth performances. WTD is very close for non-personalized rec-
ommenders performances, while WTD_H is the best for the per-
sonalized ones. Although both of them outperform all the other
strategies, WTD_H would probably be the best choice due to its
‘balance’, i.e. its percentage differences are not more than around
50% from the ground-truth for all the recommenders except MF,
which anyway has the best approximation on WTD_H among all
the strategies.

Results on Webscope R3 show something slightly different. First
of all, for the AvgRating recommender, ground-truth performances
are underestimated by all strategies. For this recommender, SKEW,
WTD and WTD_H are equally good, but superior to FULL and
REG anyway. We then find SKEW superior to WTD and WTD_H
for the PosPop recommender. But WTD and WTD_H are better
for the personalized recommenders. This fact is expected to some
extent because SKEW is a popularity-bias specific intervention
strategy. Comparing only WTD and WTD_H, we find that both are
close to each other, but we also find that the former more closely
approximates the ground truth for PosPop, UB_KNN and IB_KNN,
while the latter does it for MF and AvgRating (but slightly in this
case).

Finally, FULL and REG are very far from the ground-truth, show-
ing that ‘intelligent’ intervention strategies (such as SKEW, WTD
and WTD_H) provide an effective debiasing technique in offline
evaluations. Indeed, FULL and REG have very similar results, re-
gardless of the fact that REG is 50% smaller in size. This means
that what matters is the strategy that performs the sampling, rather
than the sampling itself.

Table 3 reports an additional investigation on the results of Table
2. An offline evaluation typically ranks recommender algorithms
from best to worst. This helps to narrow the number of different

4https://github.com/RankSys
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Table 2: Recall@10 results for CoatShopping andWebscope R3. We report ground truth performances on test set Yдt in terms
of Recall@10. We show the percentage difference of performances on the baselines and the intervened test sets with respect
to Yдt .

CoatShopping Webscope R3
Recommender Yдt FULL REG SKEW WTD WTD_H Yдt FULL REG SKEW WTD WTD_H

PosPop 0.066 +133% +124% +13% +1% -43% 0.056 +280% +272% -14% -68% -79%
AvgRating 0.068 +61% +53% +31% +6% +24% 0.016 -77% -77% -50% -51% -49%
UB_KNN 0.067 +229% +225% +112% +90% +34% 0.073 +273% +265% +35% -9% -24%
IB_KNN 0.073 +236% +227% +105% +82% +26% 0.071 +313% +306% +45% -2% -17%

MF 0.063 +180% +176% +179% +123% +102% 0.077 +258% +252% +90% +66% +52%

Table 3: Kendall’s concordance coefficient τ for CoatShop-
ping and Webscope R3. The closer to 1, the better the rank-
ing of the recommenders on an intervened test set approxi-
mates the ground truth ranking.

FULL REG SKEW WTD WTD_H
CoatShopping 0.2 0.2 0 0 0
Webscope 0.6 0.6 0.8 0.8 0.8

recommender algorithms that needs to be evaluated in costly user
trials and online experiments. In our case then, it is important that
performance estimates on intervened test sets, not only get close
to the ground truth performance, but also rank different recom-
menders in the same way they would be ranked by performance
estimates on the unbiased test set. We use Kendall’s concordance
coefficient (τ ) to compare the ground truth recommender ranking
obtained on the unbiased test set with the ones produced by the
different interventions.

The τ values on CoatShopping are far from the maximum pos-
sible value (i.e. τ = 1). Also, in this case, ‘intelligent’ interven-
tion seems to harm the concordance coefficient: SKEW, WTD and
WTD_H have lower values (τ = 0) than FULL and REG (τ = 0.2).
For Webscope, the τ values are much closer to 1. Also, the ‘intelli-
gent’ intervention strategies improve the τ values (τ = 0.8) over
the baseline ones (τ = 0.6). The concordance coefficients for Coat-
Shopping seem to advise against using ‘intelligent’ intervention
approaches such as SKEW, WTD or WTD_H. However, we note
that τ values are subject to great variability, depending on the set
of recommenders being compared. In fact, simply dropping the MF
model from the comparison, we get very different τ values; see
Table 4. Now τ values for Webscope are all the same (τ = 0.68). But
we have a completely different scenario for CoatShopping: SKEW,
WTD and WTD_H improve concordance (from τ = 0 to τ = 0.7)
and they outperform FULL and REG (which slightly improve from
τ = 0.2 to τ = 0.3). Low τ values for CoatShopping in Table 3 are a
consequence of the fact that all test sets incorrectly rank MF to be
one of the best-performing models, while it is the worst according
to the ground truth.

7 CONCLUSIONS
In this paper, we presented new sampling strategies that generate
intervened test sets with MAR-like properties from MNAR data.

Table 4: Kendall’s concordance coefficient τ for CoatShop-
ping and Webscope R3. Differently from Table 3, here we
exclude MF when calculating the coefficient.

FULL REG SKEW WTD WTD_H
CoatShopping 0.3 0.3 0.7 0.7 0.7
Webscope 0.68 0.68 0.68 0.68 0.68

These intervened test sets are therefore more suitable for approxi-
mating the performance of a recommender on unbiased test data.
One of the sampling strategies, WTD, requires that some MAR-like
data be available since it approximates posterior probabilities cal-
culated from that data. The other strategy, WTD_H, approximates
the probabilities that we expect MAR data to exhibit.

The paper assesses the effectiveness of these two strategies and it
assesses, for the first time, the effectiveness of an existing interven-
tion strategy from the literature, namely SKEW, which samples in
inverse proportion to item popularity. With the use of an essentially
unbiased test set as a ground-truth, we showed these three sam-
pling approaches to be successful in mitigating the biases found in
a classical random test set. We found SKEW to be particularly good
at reducing the bias for a popularity-based recommender (which
is related to the popularity bias of the items for which SKEW was
designed). But our new strategies are the most robust across various
recommenders since they most closely approximate the unbiased
ground-truth performances. The WTD strategy requires MAR data,
which is rarely available, but we found that WTD_H, which uses a
hypothesized MAR distribution, does work well, so MAR data is
not necessary.

Our approach brings several intrinsic benefits. First of all, it
enjoys low overheads.

• Its design is simple and easy to implement and it does not
require any learning phase for the weights, contrary to some
unbiased estimators which might require expensive learning
(e.g. [22], where propensities are found via logistic regres-
sion).

• Moreover, intervention reduces the computational costs of
testing a recommender because it generates smaller test sets.

Another advantage of our approach is that it has high generality.

• It works for both implicit and explicit datasets because it is
independent of the interaction values (e.g. ratings) in the
dataset.
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• Despite the fact that WTD and WTD_H are very close to
SKEW, our way of calculating weights is less heuristic than
the one of SKEW and, unlike SKEW, it is not tailored to item
popularity bias.

• It can be extended to training a recommender, without any
modification. Training a recommender on an intervened
training set instead of on a classical biased training set, might
improve the recommender’s model and therefore boost pre-
diction or ranking performances. For this reason, at the time
of writing we are investigating using our approach to debias
training sets to complement this work on debiasing test sets.

• Intervened data can be used to train existing recommender
systems and to test recommender systems using existing
metrics. Debiased training and testing hence become widely
applicable without designing special models and special met-
rics.

Apart from the use of our approach for training a recommender,
our aim for the future is to investigate other ways of calculating the
weights for the sampling. An alternative might be using techniques
developed for causal inference, e.g. [1, 6, 7].
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