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1 INTRODUCTION
Offline evaluations of recommender systems use an observed dataset,
which records interactions (e.g. clicks, purchases, ratings) that occur
during a given period in the lifetime of the recommender system.1
However, this dataset is biased, not only due to the freedom that
users have in choosing which items to interact with, but also due to
other factors, known as confounders. The user-interface plays an
important role, for example: differences in the ways items are ex-
posed to users (e.g. position on the screen) influence the likelihood
of a user interacting with those items. The recommender itself sets
up a feedback loop: users are typically more likely to interact with
the recommender’s suggestions than with other items. Because of
these and other confounders, interactions that are missing from the
observed dataset are Missing Not At Random (MNAR) [4].

Classical offline evaluation uses a heldout MNAR dataset, result-
ing in biased estimates of performance: for example, such experi-
ments incorrectly reward recommenders that recommend popular
items or make recommendations to the more active users. Using
a Missing At Random (MAR) test set would, by contrast, give an
unbiased estimate of performance.2 Datasets that are approximately
MAR can be collected by randomly selecting a different subset of
items for each user and then asking each user to interact with (and
rate) these items [4]. This “forced approach” to obtaining ratings
results in a dataset that is mostly devoid of confounders and roughly
uniformly distributed over users and items.

One way that researchers try to obtain less biased offline evalua-
tion is by designing new supposedly unbiased estimators for use
on MNAR test data [6]. We investigate an alternative solution, a
sampling approach. The general idea is to use a sampling strategy
on MNAR data to generate an intervened test set with less bias —
one that is more MAR-like. An example of this is SKEW, a sampling
strategy that aims to adjust for the confounding effect that an item’s
popularity has on its likelihood of being observed [2].

In this extended abstract, we propose a novel formulation for
the sampling approach. We compare our solution to SKEW and to
a baseline, REG, which performs a random intervention on MNAR
data (and hence is equivalent to no intervention in practice). We
empirically validate for the first time the effectiveness of SKEW and
we show our approach to be a better estimator of the performance
one would obtain on unbiased MAR test data.

1This abstract emanates from research supported by a grant from Science Foundation
Ireland (Grant Number SFI/12/RC/2289), which is co-funded under the European
Regional Development Fund.
2What we refer to as MAR, in line with papers such as [1, 6], others refer to as Missing
Completely At Random, MCAR, e.g. [3].

2 INTERVENED TEST SETS
We define a probabilistic framework. We consider a user-item space,
U × I , of size |U | · |I |. We denote with u ∈ U = {1, .., |U |} a generic
user and with i ∈ I = {1, .., |I |} a generic item. We also denote
with the matrix O ∈ RU×I a generic observed dataset. The matrix
O records which interactions between users and items have been
observed: Ou,i , 0 if an interaction is observed and Ou,i = 0
otherwise. We also define the binary random variable O : U × I →
{0, 1} over the set of user-item pairs in O as O = 1 if the user-item
interaction is observed and O = 0 otherwise. (But later we will use
abbreviation P(O) in place of P(O = 1).) Using this notation, we
refer to two kinds of datasets over the sameU × I space,Omnar and
Omar , which have MNAR and MAR-like properties respectively.

2.1 The goal of the sampling
The sampling approach consists in performing a debiasing inter-
vention on MNAR data Omnar by means of a given sampling strat-
egy, denoted with S . The result of the intervention is the subset
OS ⊂ Omnar , with the goal that OS has unbiased-like properties.
To model the sampling, we denote with S : U × I → {0, 1} the
binary random variable that guides the sampling. S = 1 when
a particular user-item pair is sampled from Omnar , 0 otherwise.
(Again, we will use abbreviation P(S) in place of P(S = 1).) In prac-
tice, a particular strategy S is characterized by the expression of
the probability PS (S|u, i),∀(u, i) ∈ Omnar , which is the probability
distribution responsible for guiding the sampling on Omnar .

In REG, because every (u, i) entry has the same probability of
being sampled, we have PS (S|u, i) = 1/|Omnar |. In SKEW, we
have PS (S|u, i) = 1/pop(i), where pop(i) counts the number of
interactions available for the item i in Omnar .

2.2 Our approach: weights for the sampling
Our approach assumes the availability of some unbiased MAR-like
data Omar in addition to MNAR data Omnar .

Our idea is to make the posterior probability of each user-item
pair in the sampled OS , i.e. PS (u, i |S), approximately the same as
the posterior distribution observed for the corresponding user-item
pair in Omar , i.e. Pmar (u, i |O). Writing this as a formula, we want:

PS (u, i |S) ≈ Pmar (u, i |O) ∀(u, i) ∈ OS (1)

To obtain this approximation, we adjust the posterior distribu-
tions of the sampling space Omnar , i.e. Pmnar (u, i |O), using user-
item weights w = (wui )u ∈U ,i ∈I (similarly to [5]). We denote the
modified weighted MNAR posteriors by Pmnar (u, i |O,w) and we
usew to obtain the following equality:
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Table 1: Percentage difference of performances on the inter-
vened test sets with respect to Oдt .

Recommender REG SKEW WTD
PosPop +274.5 -13.7 -68.4

AvgRating -75.6 -47.8 -50.5
UB_KNN +272.5 +42.7 -4.4
IB_KNN +312.1 +46.5 -3.78
RankMF +259.9 +86.0 +54.8

Pmnar (u, i |O,w) = Pmar (u, i |O) ∀(u, i) ∈ Omnar (2)

We know that a typical MAR dataset is uniformly distributed
over users and items, and so we have that Pmar (u |O) ≈ 1/|U | and
Pmar (i |O) ≈ 1/|I |. Therefore, Pmar (u, i |O) ≈ 1/|U | |I |, and we can
infer Pmar (u, i |O) ≈ Pmar (u |O)Pmar (i |O). We use the indepen-
dence of user and item posteriors to split the left side of formula 2
into the two following equalities:

Pmnar (u |O,w) = Pmar (u |O) ∀u ∈ U (3)

Pmnar (i |O,w) = Pmar (i |O) ∀i ∈ I (4)

As a consequence of the independence between user and item
posteriors which led to formulas 3 and 4, we can define and calculate
user-specific weightsw = (wu )u ∈U and item-specific weightsw =
(wi )i ∈I instead of weights that are user-item specific.

We propose the most straightforward solution to model the
weighted MNAR posteriors, i.e. Pmnar (.|O,w) = w .Pmnar (.|O).
We plug this into formulas 3 and 4 and we obtainwuPmnar (u |O) =

Pmar (u |O), wiPmnar (i |O) = Pmar (i |O) for each user and item
weighted distribution respectively. Simply reversing the two for-
mulas, we have the expressions for calculating the weights:

wu =
Pmar (u |O)

Pmnar (u |O)
∀u ∈ U (5)

wi =
Pmar (i |O)

Pmnar (i |O)
∀i ∈ I (6)

We can think of the calculated weights as quantities that measure
the divergence between the MNAR distributions of the sampling
space and the target MAR distribution. Because a specific weight ad-
justs the correspondingMNAR distribution, we directly use weights
to model the sampling distribution, i.e. PS (S|u, i) = wuwi . During
the sampling, the effect of the weights is to increase or decrease the
probability that a particular user-item pair is sampled depending
on how divergent are the user and item posterior probabilities in
the MNAR sampling space with respect to MAR distributions.

In fact, based on preliminary experiments, we use PS (S|u, i) =
wu (wi )

2 instead. This variant, denoted by WTD, raises the impor-
tance of the item weight relative to the user weight. Specifically,
(wi )

2 will be bigger thanwi ifwi is greater than one, and (wi )
2 will

be smaller thanwi ifwi is less than one.

3 EXPERIMENTS
In this extended abstract, we illustrate our proposed approach using
just one dataset, the Webscope R3 dataset, a 5-stars rating dataset
on the music domain [4].3 This dataset is composed of two parts:
one part was collected by the “forced approach” we mentioned
earlier and thus has MAR-like properties (Omar ); the other part is
a traditional observed dataset, having MNAR properties (Omnar ).

We randomly split Omnar into a training set Otr and a heldout
setOhe . Since the split is random,MNARdistributions are preserved
in both sets. We use the former to train a given recommender. We
use the latter as the sampling space to obtain the three intervened
test sets, one per strategy (REG, SKEW, WTD).

We splitOmar into two, i.e.Ow andOдt .Ow is used to calculate
the weights; see the next paragraph. We use Oдt as an unbiased
test set (or, at least, as a test set that is much less biased than an
MNAR test set would be). In other words, we want the performance
of a recommender on an intervened test set to be close to its per-
formance on this unbiased test set. The best intervention strategy
is the one that produces test sets where performance most closely
resembles performance on Oдt .

To calculate wu for a specific u (Eq. 5), we need the posteriors
P.(u |O). These are calculated as the proportion of interactions as-
sociated with user u in Ow over the proportions in Otr . The item
weights (Eq. 6) are calculated analogously.

We train five recommender systems on Otr . AvgRating and
PosPop rank items in descending order of their mean rating and
number of positive ratings, respectively. UB_KNN and IB_KNN are
user-based and item-based nearest-neighbour algorithms. RankMF
is Matrix Factorization with a ranking loss function.

Table 1 shows how Recall@10 on the three intervened sets differs
from Recall@10 onOдt . We see that WTD is superior for UB_KNN,
IB_KNNN and RankMF. It is close to SKEW in the case of AvgRating.
SKEW is expected to be the best for PosPop as it is designed to
account for the item popularity bias in a test set.

We conclude that WTD is the most robust across various rec-
ommenders. We are investigating using it to debias training sets to
complement this work on debiasing test sets. We also have a way of
calculating the sampling weights without requiring the unbiased
dataset,Ow , using instead a hypothesized, ‘ideal’ MAR distribution.

REFERENCES
[1] Rocío Cañamares and Pablo Castells. 2018. Should I Follow the Crowd?: A Proba-

bilistic Analysis of the Effectiveness of Popularity in Recommender Systems. In
41st International ACM SIGIR Conference on Research & Development in Information
Retrieval. 415–424.

[2] Dawen Liang, Laurent Charlin, and David M. Blei. 2016. Causal Inference for
Recommendation. In UAI Workshop on Causation.

[3] Benjamin M. Marlin and Richard S. Zemel. 2009. Collaborative Prediction and
Ranking with Non-random Missing Data. In Third ACM Conference on Recom-
mender Systems. 5–12.

[4] Benjamin M. Marlin, Richard S. Zemel, Sam Roweis, and Malcolm Slaney. 2007.
Collaborative Filtering and the Missing at Random Assumption. In Twenty-Third
Conference on Uncertainty in Artificial Intelligence. 267–275.

[5] Arnaud De Myttenaere, Bénédicte Le Grand, Boris Golden, and Fabrice Rossi.
2014. Reducing Offline Evaluation Bias in Recommendation Systems. CoRR
abs/1407.0822 (2014).

[6] Harald Steck. 2010. Training and Testing of Recommender Systems on Data Miss-
ing Not at Random. In 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 713–722.

3Available by request at https://webscope.sandbox.yahoo.com


	1 Introduction
	2 Intervened Test Sets
	2.1 The goal of the sampling
	2.2 Our approach: weights for the sampling

	3 Experiments
	References

