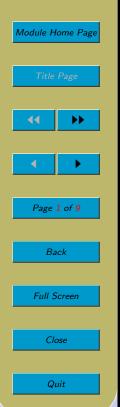


Counter Programs Turing Machines and . . .



Lecture 40: Another Model of Computation

Aims:

- To look at Counter Programs, which are another formal model of computation; and
- To show that Turing machines and Counter Programs are of equivalent power.

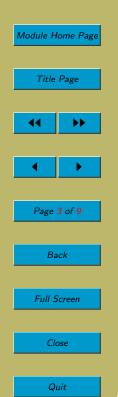
Counter Programs Turing Machines and . .

Module Home Page
Title Page
•• ••
 ▲
Page 2 of 9
Back
Full Screen
Close
Quit

40.1. Counter Programs

- Turing machines are only one of many formal models of computation.
- Here we describe *Counter Programs*, which are another very simple formal model.
- Counter Programs or something very like them also go under the names Counter Machines, Register Machines, Minsky Machines, etc.
- A Counter Program has a finite set of variables.
- Each variable can store a natural number (i.e. a non-negative integer).
- A Counter Program is a finite *sequence* of labelled commands, the last of which is **halt**
- The other allowable commands are:
 - -x := 0
 - -x := y + 1
 - -x := y 1 (In Counter Programs, y 1 is defined to be zero if y is already 0)
 - if x = 0 goto G (where G is the label of a command in the Program)
- The commands are executed in sequence, but branching off to the specified command when a **goto** is encountered, and terminating when the final command in the sequence (**halt**) is encountered.
- Example 1. A Counter Program having variables u, x and y which, if started in configuration $\langle u = u_0, x = x_0, y = y_0 \rangle$, will halt in configuration $\langle u = 0, x = x_0 + y_0, y = 0 \rangle$. In other words, it adds the initial contents of x and y and stores the result in x, also destroying the value that was in y. E.g. if initially x contains 3 and y contains 2, then afterwards x will contain 5 and y will contain 0.

Counter Programs Turing Machines and



Note the role of u.

```
 \begin{array}{ll} \hline 1. \ u := 0; \\ 2. \ \ {\rm if} \ y = 0 \ {\rm goto} \ 6; \\ 3. \ y := y - 1; \\ 4. \ x := x + 1; \\ 5. \ \ {\rm if} \ u = 0 \ {\rm goto} \ 2; \\ 6. \ {\rm halt} \end{array}
```

- Trace the program for initial configuration $\langle u = 28, x = 3, y = 2 \rangle$.
- Example 2. A Counter Program which, if started in configuration $\langle u = u_0, v = v_0, x = x_0, y = y_0, z = z_0 \rangle$, will halt in configuration $\langle u = 0, v = 0, x = 0, y = y_0, z = x_0 \times y_0 \rangle$. In other words, it multiplies the initial contents of x and y and stores the result in z, also destroying the value that was in x. u has the same role as before.

Note the trick we use to copy y into v. And note that the second half of the program is effectively the adding program from Example 1.

(1. $u := 0;$	
	2. $z := 0;$	
	3. if $x = 0$ goto 11;	
	4. $x := x - 1;$	
	5. $v := y + 1;$	
	6. $v := v - 1;$	
	7. if $v = 0$ goto 3;	
	8. $v := v - 1;$	
	9. $z := z + 1;$	
	10. if $u = 0$ goto 7;	
	11. halt	

Counter Programs Turing Machines and . .

Module Home Page	
Title Page	
•• ••	
Page 4 of 9	
Back	
Full Screen	
Close	
Quit	

- Just as with Turing machines, Counter Programs can be defined in many different ways that are of equivalent power:
 - E.g. restricting yourself to only two variables;
 - E.g. insisting that one register is used for the answer, and the rest are cleared by the end of the computation;
 - E.g. allowing infinitely many variables;
 - E.g. using slightly different commands.

Counter Programs	
Turing Machines and	
Module Home Page	
THE	
Title Page	
44 >>	
Page 5 of 9	
Fage 5 01 9	
Back	
Full Screen	
Close	

40.2. Turing Machines and Counter Programs are of Equivalent Power

- Turing machines and Counter Programs are of equivalent power: any problem that can be solved by a Turing machine can be solved by a Counter Program, and *vice versa*.
- This is by no mean obvious: they seem like very different models of computation.
- We prove this by showing that
 - anything a Turing machine can do, a Counter Program can do i.e., given a Turing machine, we show how to build a Counter Program that performs the same computation; and
 - anything a Counter Program can do, a Turing machine can do i.e., given a Counter Program, we show how to build a Turing machine that performs the same computation.
- One possibly useful observation is that both models have a potentially infinite amount of memory: for Turing machines this comes in the form of its infinite tape; Counter Programs have a finite set of variables but each can hold an arbitrarily large value.

40.2.1. Using a Counter Program to Simulate a Turing Machine

- The first challenge is how to represent the contents of the tape as one or more numbers that can be stored in the variables of a Counter Program. This is possible because, although the tape is infinite, only finitely many cells are non-blank.
- Each member of Σ must be associated with a natural number (non-negative number).

Counter Programs Turing Machines and . .

Module Home Page Title Page Page <mark>6</mark> of <mark>9</mark> Back Full Screen Close

Quit

• E.g. if $\Sigma = \{a, b, X, \bot\},\$

a	:	0	b	:	1
X	:	2	L	:	3

• Then, if you have a sequence of characters $c_1, c_2, c_3, \ldots c_n$ and their corresponding numbers are $d_1, d_2, d_3, \ldots, d_n$, then these numbers can be combined into a single, unique number:

$$2^{d_1} \times 3^{d_2} \times 5^{d_3} \times \ldots \times p_n^{d_n}$$

where p_i is the *i*th prime number. (Fundamental Theorem of Arithmetic!)

- E.g. $aabX_bbX$ becomes $2^0 \times 3^0 \times 5^1 \times 7^2 \times 11^3 \times 13^1 \times 17^1 \times 19^2 = 26016185200$ (and no other string of characters map to the same number).
- In fact, for reasons we needn't go into, the above is a simplification. And, instead, we have to use a slight variant, such as:

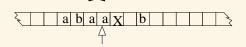
$$2^{d_1+1} \times 3^{d_2+1} \times 5^{d_3+1} \times \ldots \times p_n^{d_n+1}$$

- We can use two numbers to encode
 - the cells from the leftmost non-blank up to but excluding the scanned symbol; and

- the cells from the rightmost non-blank up to and including the scanned symbol.

Note how the last of these is encoded 'in reverse'.

• E.g.



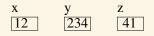
Counter Programs	
Turing Machines and	
Module Home Page	
Title Page	
•• ••	
Page 7 of 9	
Back	
Full Screen	
Close	

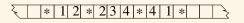
Quit

- $2^0 \times 3^1 \times 5^0 = 3 \qquad \qquad 2^1 \times 3^3 \times 5^2 \times 7^0 = 1350$
- So the Counter Program has a variable x to hold the left-hand tape contents, a variable y to hold the right-hand tape contents, and a variable z to hold the Turing machine's state (plus some extra ones to help it get its work done).
- For each entry in the Turing machine's transition table, there is a sequence of Counter Program commands which alter the contents of the three variables.
- E.g. if the Turing machine moves left, we do some arithmetic on x to make it a smaller number and some arithmetic on y to make it a bigger number. (Similarly, for moving right.)
- E.g. if the Turing machine writes a symbol, then we do some arithmetic on y.
- In all cases, we also do some arithmetic on z to reflect the change of state.

40.2.2. Using a Turing Machine to Simulate a Counter Program

- Now the first challenge is how to represent the contents of the Counter Program's variables as symbols on a tape.
- Easy! Let Σ = {0,...,9,*} and write out the contents of each variable onto the tape, separated by, e.g., *'s.
- E.g.





Counter Programs			
Tu	ring Mach	ines and	
	Module H	lome Page	
	Title	Dem	
	The	rage	
	••	>>	
	•		
	Page	8 of 9	
	Ba	nck	
	Full 9	Screen	
	- Full S	, creen	
	Cl	ose	

Quit

- In fact, contrary to what is shown in the diagram, you would probably use a binary encoding.
- For each type of command, we can work out a simple Turing machine control unit:
 - E.g. x := 0: scan the tape to reach the part that holds the value of x and then do some shifting (e.g. so that *12* becomes **)
 - E.g. x := y + 1: involves a lot of scanning, shifting and writing.
- Then these basic machines can be combined, just like we were combining simple Turing machines into complex ones earlier.

Acknowledgements

[Har92], [LP81] and [Tru91] were all used to help me to write this lecture.

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

Counter Programs Turing Machines and

Module Home Page
Title Page
Page 9 of 9
Back
Full Screen
Close
Quit

References

- [Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition, 1992.
- [LP81] H.R. Lewis and C.H. Papadimitriou. *Elements of the Theory of Computation*. Prentice Hall, 1981.
- [Tru91] J.K. Truss. Discrete Mathematics for Computer Scientists. Addison Wesley, 1991.