
Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 1 of 17

Back

Full Screen

Close

Quit

Lecture 23:

Measuring and Analysing Algorithm Complexity

Aims:

• To look at various ways of comparing algorithms;

• To look at the idea of expressing the running time of an algorithm as a
function of input size;

• To look at the idea of defining the worst-, best- and average-case running
times.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 2 of 17

Back

Full Screen

Close

Quit

23.1. Choosing an Algorithm

• For every problem there is a multitude of algorithms that solve the problem. So you
have a choice of algorithms to code up as programs.

• If a program is likely to be used only once on a small amount of data, then you
should select the algorithm that is easiest to implement. Code it up correctly, run it
and move on to something else.

• But if the program will be used many times and has a lifetime that makes main-
tenance likely, then other factors come into play including readability, extensibility,
portability, reusability, ease of use and efficiency. It is efficiency that we be looking
at in this part of the module.

• The efficiency of an algorithm depends on its use of resources, such as:

– the time it takes the algorithm to execute;

– the memory it uses for its variables;

– the network traffic it generates;

– the number of disk accesses it makes;

– etc.

We are going to focus pretty much exclusively on time.

• Note, however, that trade-offs are often necessary. An algorithm may save time
by using more space; or it may reduce disk accesses by using more main memory.
Efficiency often also conflicts with other criteria such as readability, extensibility, etc.

• It is often said that there is no need to worry about selecting an efficient algorithm or
improving the efficiency of an algorithm. According to this viewpoint, an algorithm
that is impractically inefficient today will become at least adequately efficient on

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 3 of 17

Back

Full Screen

Close

Quit

the faster hardware that we anticipate will be available in a few years’ time. This
viewpoint ignores at least two facts:

– Increases in hardware speed are outstripped by increases in our ambitions. For
example, even allowing for good advances in hardware speed, we will need
supremely efficient algorithms if we are to advance the state-of-the-art in re-
alistic gaming systems.

– As we will see, some algorithms are so unreasonably inefficient that no reason-
able increases in hardware speed will ever make the algorithms practical

So it is worth worrying about and we’ll begin to look at how to do it.

• Suppose you have two or more algorithms that are designed to solve the same prob-
lem. There are two main ways of comparing their running times:

Benchmarking: code them up as programs, execute both programs on some typical
inputs and measure their running times;

Analysis: reason about the algorithms to develop formulae that are predictive of
their running times.

• Let’s briefly discuss benchmarking first. This has several disadvantages:

– If we are choosing between two (or more) algorithms, we would prefer to predict
their running times, compare the predictions and code up only one of the algo-
rithms. But, benchmarking requires us to code up both algorithms as programs,
before we can carry out any comparisons.

– As we discussed in lecture 2, for most problems there are an infinite number of
problem instances. Benchmarking measures performance on only a finite subset
of the instances. This raises questions about the representativeness of the chosen
subset. (We had similar concerns when we discussed program testing.)

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 4 of 17

Back

Full Screen

Close

Quit

– Any running times that we obtain will depend on the programming language,
compiler, hardware, etc.

– Measuring execution time is fraught with difficulties. If you are running on a
multi-user machine, then elapsed time is not the correct measure. You must
measure CPU time. But for certain programming languages, additional house-
keeping activities might run at unpredictable points and you may not wish to
include these in your measurements. For example, if you use Java, the Java
garbage collector will run at various points to reclaim the memory space used
by unneeded objects. You may want to exclude from your measurements any
time spent garbage collecting. Another problem is that the timing commands
provided by many programming languages do not report times to a sufficient
level of precision. For the very simplest operations, the timing commands might
report a time of zero. It then becomes necessary to find the time it takes to
execute 10 (or whatever) copies of the command and then divide by 10.

• We are not going to discuss benchmarking any further; we will focus on analysis.
You shouldn’t assume that benchmarking is useless. It is, in fact, very important in
practice.

As you will discover, algorithm analysis tends to present us with very rough-and-
ready formulae. Benchmarking can be important for finer-grained discriminations.
For example, suppose we have three algorithms, A, B and C. Analysis may predict
that B has by far the highest running time, enabling us to discard further considera-
tion of algorithm B. Analysis may also predict that A has a higher running time than
C. But the predictions are rough-and-ready, so if the predictions are in some sense
close, then we may choose to code up both A and C as programs and benchmark
them.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 5 of 17

Back

Full Screen

Close

Quit

23.2. Analysis of Running Times

23.2.1. Dependence on Input Size

• The running time of an algorithm will be the sum of

– a fixed part that is independent of the parameters;

– a variable part that will depend on the parameters.

• For example, the running time of the following algorithm. . .

Parameters: A positive integer, n.

Returns: The sum of the integers from 1 to n.

{ sum := 0;
for i := 1 upto n
{ sum := sum + i;
}
return sum;

}

is

– the time taken to initialise sum and to return it, which will be the same no
matter what n is, plus

– the time we spend executing the loop body, which will depend on the value of
n.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 6 of 17

Back

Full Screen

Close

Quit

Suppose the first and last commands take 4 microseconds to execute in total, and
suppose the assignment in the loop body takes 2 microseconds to execute, then we
can define the running time in microseconds of this algorithm for input n, t(n):

t(n) =def 4 + 2n

(I’ve simplified! I ignored the time taken to initialise i, to test i each time round
the loop and to increment i each time round the loop.) The point is the run time is
expressed as a function of the input size.

• In the previous problem, there was an infinite number of instances. But each one
was of a different size. In general, some of the inputs may be the same size.

Consider this example:

Problem 23.1.
Parameters: A finite-length list, L, of positive integers.
Returns: The sum of the integers in the list.

Many of the problem instances are of the same size:

Size: 0 1 2 3 . . .
[] [1] [1, 1] [1, 1, 1]

[2] [1, 2] [1, 1, 2]
[3] [1, 3] [1, 1, 3]
...

...
...

[2, 1] [1, 2, 1]
[2, 2] [1, 2, 2]
...

...

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 7 of 17

Back

Full Screen

Close

Quit

Even so, we can still express the running time as a function of the input size.

Parameters: A finite-length list, L, of positive integers.

Returns: The sum of the integers in the list.

{ sum := 0;
for each x in L
{ sum := sum + x;
}
return sum

}

Making similar assumptions (and simplifications), the running time of this algorithm,
t(n), might also be 4 + 2n, where n is the length of L. But you can see more clearly
now what we mean by this. We mean that for any problem instance of size n (and,
as we have seen, there may be more than one instance of any given size), the time
taken will be 4 + 2n microseconds.

23.2.2. Worst, Best and Average Cases

• But we’ve now got a problem. Some algorithms will have different running times
even for two problem instances of the same size.

• For example, consider sorting lists of integers into ascending order. Here are some
problem instances all of size 3:

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 8 of 17

Back

Full Screen

Close

Quit

Size: 3
[11, 13, 15]
[11, 15, 13]
[13, 11, 15]
[13, 15, 11]
[15, 11, 13]
[15, 13, 11]

Although these problem instances are all of the same size, it’s likely that a sorting
algorithm will do less work for those instances that are already more nearly-sorted
into ascending order.

But, in that case, how can we come up with a function t(n) that expresses the running
time in terms of just the input size, n?

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 9 of 17

Back

Full Screen

Close

Quit

• Here’s another example that makes the same point.

Algorithm: LinearSearch(x, a, lower , upper)

Parameters: x is an integer; a[lower . . . upper] is an array

of integers; 0 < lower ≤ upper .
Returns: The position of the first occurrence of x in a

if found, otherwise fail.
{ for i := lower upto upper

{ if a[i] = x
{ return i;
}

}
return fail;

}

Although this has more than one parameter, in terms of problem size the only one
that matters is the length of the array, as this may vary from instance to instance.
The length is upper − lower + 1, but let’s call it n.

Here are four problem instances. They are all the same size: n = 10. But the running
time for the first will be lower than for the second, which will be lower than for the
third, which will be lower than for the fourth.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 10 of 17

Back

Full Screen

Close

Quit

x a (length 10)

11 11121314151617181920

15 11121314151617181920

20 11121314151617181920

21 11121314151617181920

Again, these inputs are all the same size but their running times differ, so how can
we come up with a function t(n) that expresses the running time in terms of just the
input size, n?

• When an algorithm’s running time depends on the actual input and not just the
input size, we have several options:

Worst-Case: Define t(n) to be the worst-case running time among all inputs of size
n. In other words, make the least favourable assumptions.
The nice thing about reporting a worst-case running time is that it is a guaran-
tee. The algorithm will not take longer than the worst-case time. The algorithm
could run in much less time for some inputs, but it never takes longer than the
worst-case time, no matter what the input is.

Best-Case: Define t(n) to be the best-case running time among all inputs of size n.
In other words, make the most favourable assumptions.
There are many people who believe that this is a bogus measure; it does not
offer a reliable way to compare algorithms. An algorithm that has an excellent
best-case running time may be slow in general but fast on just one or a few
inputs.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 11 of 17

Back

Full Screen

Close

Quit

Average-Case: Define t(n) to be the average-case running time over all inputs of
size n. In other words, take an average over all the possibilities.
This is quite an attractive option, but it is often much harder to compute
than worst- or best-case running times. At its simplest, you are required to
assume that all instances of a given size are equally likely. This may not be true
in practice. Alternatively, you have to define a probability distribution that
describes how likely each instance is and use this to weight the average.

• We will focus on worst-case running times.

Class Exercise

• Give formulae for the

– worst-case running time

– best-case running time; and

– average-case running time

of the LinearSearch algorithm as functions of n, the length of the array. Assume
that each operation takes 1 microsecond. (Again, to keep things simple, you can
ignore the time it takes to initialise i, to test whether i > upper each time round the
loop and to increment i each time round the loop.)

What assumption did you make when computing the average-case running time?
Discuss the reasonableness of this assumption.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 12 of 17

Back

Full Screen

Close

Quit

23.3. Time Complexity

• To develop our formulae, we have had to make assumptions about how long different
operations take. E.g. in the previous exercise I told you to assume that testing a[i]
took 1 microsecond. This is obviously problematic. Where do the numbers come
from?

• We could write a program that contains some simple commands (initialising a vari-
able, comparing the contents of a variable with another, etc.) and some timing
commands. Then we could find out how long each operation takes and use these
numbers in our formulae. The weakness of this is that it is machine-dependent,
programming language-dependent, compiler-dependent, etc.

• This is a point at which it is worth remembering what our goals are. We want to be
able to compare algorithms. We want to do this by analysing the algorithms to obtain
rough-and-ready predictions of their running times. This will tell us, for example,
which one or ones are worth coding up as programs for benchmarking or, if the
predicted running times are very poor it will tell us that we should instead put more
effort into finding a better algorithm to begin with. The analysis should be something
we can do quite quickly. If it takes too long (e.g. because it is too complicated), then
we might just as well have coded up all the algorithms and benchmarked them.
Furthermore, the predicted running times should be robust enough to hold true
across different hardware, programming languages and compilers.

• In the light of these goals, here is what we do.

– We count ‘primitive’ operations, instead of timing them.

– We might have quite a high-level view of what constitutes a ‘primitive’ opera-
tion.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 13 of 17

Back

Full Screen

Close

Quit

– Consider the following, for example:

mid := (lo + hi) div 2;

For the most part it is acceptable to count this as one operation, no matter
how complicated the right-hand expression is! Only very rarely will you want
to count it as 2 or 3 operations.

– We may not even count all operations. We might just count major operations:
those that we think are most significant for a given problem. For example, if the
problem is to search for a value in a list, we might only count comparisons of the
value and items in the list. Or, if we are looking at certain sorting algorithms,
we might only count comparisons or swaps.

– With these simplifications, we say we are computing the time complexity, rather
than the running time. We continue to focus on worst-cases, so we say we are
computing the worst-case time complexity of an algorithm.

• This simplification helps us obtain cheap-to-compute rough-and-ready formulae. Of
course, it does mean that when two algorithms have even fairly similar time com-
plexities, we have to be more wary of drawing firm conclusions about which is the
more efficient, and we may need to using benchmarking as a follow-up more often.

• So, unless otherwise stated, let’s count the following:

Assignment: One for each assignment command, no matter how complicated the
expression

One-armed conditional: One for the test, possibly plus the cost of the branch,
making the most pessimistic assumptions about whether the branch is executed

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 14 of 17

Back

Full Screen

Close

Quit

Two-armed conditional: One for the test, plus the cost of one of the branches,
making the most pessimistic assumptions about which branch is executed

Unbounded iteration: One for the test plus the cost of the body, multiplied by
the number of iterations, making the most pessimistic assumptions about the
number of iterations

Bounded iteration: One for the test plus the cost of the body plus one for incre-
menting, multiplied by the number of iterations, making the most pessimistic
assumptions about the number of iterations, plus one for initialisation

Other: One for return commands. And we’ll just exclude procedures and anything
else from our examples to keep the material a bit simpler.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 15 of 17

Back

Full Screen

Close

Quit

Class Exercise

• Give a formula for t(n), in terms of n, that defines the worst-case time complexity
of the following, counting only assignments to maxSoFar.

Algorithm: arrayMax(a)

Parameters: An array, a[1 . . . n].

Returns: The largest element in a.

{ maxSoFar := a[1];
for i := 2 upto n
{ if a[i] > maxSoFar

{ maxSoFar := a[i];
}

}
return maxSoFar;

}

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 16 of 17

Back

Full Screen

Close

Quit

23.4. Summary

• We’ve made numerous simplifications (and there are more to come). We obtain a
formula in terms of the input size which predicts:

Algorithm — our predictions concern algorithms or programs
Worst-Case — where predictions would vary for inputs of the same size, we offer

guarantees by being pessimistic
Time — our predictions concern execution time

Complexity — but we count the (‘major’) ‘primitive’ operations, rather than mea-
suring time on some architecture

Acknowledgements

I have drawn ideas from [AU92], [GT02], [Har92] and [HSR96].

Clip Art (of head with bomb) licensed from the Clip Art Gallery on DiscoverySchool.com.

http://www.cs.ucc.ie/~dgb/courses/toc.html


Choosing an Algorithm

Analysis of Running Times

Time Complexity

Summary

Module Home Page

Title Page

JJ II

J I

Page 17 of 17

Back

Full Screen

Close

Quit

References

[AU92] A. V. Aho and J. D. Ullman. Foundations of Computer Science. W.H. Freeman,
1992.

[GT02] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analysis, and
Internet Examples. Wiley, 2002.

[Har92] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 2nd edition,
1992.

[HSR96] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer Algorithms/C++. W.H.
Freeman, 1996.

http://www.cs.ucc.ie/~dgb/courses/toc.html

	Choosing an Algorithm
	Analysis of Running Times
	Dependence on Input Size
	Worst, Best and Average Cases

	Time Complexity
	Summary

