CS6120: Intelligent Media Systems

Dr. Derek Bridge

School of Computer Science & Information Technology UCC

Content-Based Recommenders

- Content-based recommenders require descriptions
- Item descriptions
 - assume, for now, each description is just a set of keywords or *terms*
 - e.g. for movies: genre (action, comedy,...) but maybe actor and director names, maybe words that describe the plot
 - other terminology: tags, metadata
- User profile
 - also a set of keywords or terms that describe a user's tastes

Item Descriptions

- Tagging an item
 - means describing it using a set of terms
- Experts using a controlled vocabulary
 - a fixed, agreed set of termse.g. Pandora's Music
 - Genome Project – e.g. Netflix employs 40
 - people to hand-tag TV shows and movies

ew York Time's article: The Song Decode

Item Descriptions • End-users using an open vocabulary - e.g. flickr, last.fm,... • Why will they do this? - to organize their collection — to make it amenable for 📓 search - self-expression,... • But can be very noisy

User Profiles

- Explicit
 - ask user to supply keywords when s/he registers
- Implicit
 - add keywords to user profile from item descriptions of items which s/he shows an interest

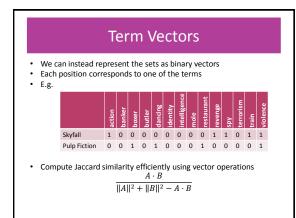
		to explore, Dere ata to personaliza your		ina		Save Starents	
Action Manes		Cars		INUE.		Rodework	
Alternative Drungs		Carloers		Halory	*	Rock music	
American Fooball		Classic Rock		Home improvement.		Sative	
American History		Cognitive Science		Hamor		Science	
Analest History		Comedy Movies		Internet	*	Science Fiction	
Animals		Computer Displaces		Internet Tools	~	Sel Inprovement	
Andvlodum		Computers	*	lifer's broom		Secol Health	
Arts	1	Design		Illovies	*	Space Exploration	
Autonomy	1	Electronic Devices	*	Illunic	*	Spirituality	
Entres		Estrepreneurship		Notero		Spotstereol	
Beer		Facebook		Outdoors		Technology	
Bizarre/OddRes	. *	Filmeso		Philosophy	*	Television	
Books	. *	FoodCocking		Photography		Travel	
Business		Futuriam	*	Physics	*	Writige Cars	
Camping		Gadgets		Quiles		Wine	

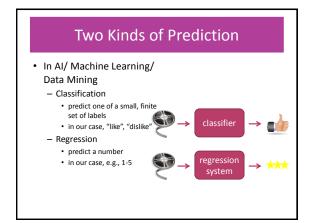
Similarity

- The similarity of set of terms A and set of terms B – e.g. A = a user profile and B = an item description
 - e.g. A = an item description and B = another item description
- Can be based on the size of their intersection: $|A \cap B|$
- But this gives bigger sets a greater chance of higher similarity
- Better is Jaccard similarity, which normalizes by the • size of the union:

 $|A \cap B|$ $|A \cup B|$

Example								
Title	Director		Terms					
Skyfall	Mendes		spy, action, train, revenge, violence					
Pulp Fiction	Tarantino		boxer, violence, restaurant, dancing					
Tinker, Tailor	Alfredson		intelligence, spy, identity, mole					
Casino Royale	Campbell		terrorism, spy, violence, banker					
Batman Begins	Nolan		revenge, butler, identity					
• How sin – Skyfall		-	loyale?					
– Tinker,	Tailor a	nd Ba	atman Begins?					





It's Time to Build a Recommender!

• So, we have

- item descriptions
- user profiles
- a way of measuring similarity
- a set of candidate items
- For each candidate item, the recommender must make a prediction

A classifier

for each candidate item, icompute sim(i, u), similarity between item description and user profile

if $sim(i, u) \ge \theta$

predict "like" for item i

else

predict "dislike" for item i

recommend the candidates for which the prediction is "like" in descending order of similarity

			Example		
Title	Director		Terms	sim	like?
Skyfall	Mendes		spy, action, train, revenge, violence	3/6	like
Pulp Fiction	Tarantino		boxer, violence, restaurant, dancing	1/7	dislike
Tinker, Tailor	Alfredson		intelligence, spy, identity, mole	2/6	like
Casino Royale	Campbell		terrorism, spy, violence, banker	2/6	like
Batman Begins	Nolan		revenge, butler, identity	1/6	dislike
User	Terms				
Ann	spy, action	, violence	e, identity		
• If <i>θ</i> =	1/3,				
Roy		,	all", "Tinker, Tailor," and "	Casino	D

Lifting the Burden

Problems

- Item descriptions
 - expert tagging is expensive
 - end-user tagging is 'uneven'
- User profiles
 - explicit construction on registration is inconvenient and gives profiles that are static

Solutions

- Item descriptions
 - extract terms from, e.g.:
 book or movie plot synopsis
 review of a restaurant,...
 - the text itself of web pages, news stories,...
- User profiles
 - use terms from items s/he likes

Term Frequency Vectors

- Suppose we're extracting the terms from a 'document'
- Instead of 0/1, we can use numeric *weights* that reflect the importance of a keyword
- Simplest is *term frequency*, *tf*_t - how often term *t* appears in the document

• E.g.		action	banker	boxer	butler	dancing	identity	intelligence	mole	restaurant	revenge	spy	terrorism	train	violence
	Skyfall	1	0	0	0	0	0	0	0	0	3	5	0	2	1
	Pulp Fiction	0	0	4	0	1	0	0	0	2	0	0	0	0	1

Problem with Term Frequency

Problem

- some words will be frequent but not important
- e.g. in a plot synopsis for a film "man", "woman",...– one sign of this is that they occur in many of the
- documents

Inverse Document Frequency

- Let df_t be the document frequency of term t

 how many documents t occurs in
- The importance of t is inversely related to df_t
- The inverse document frequency of *t* is given by

$$idf_t = \frac{N}{1 + df_t}$$

where N is the total number of documents

TF-IDF

- So the weights we use in our term vectors are based on combining
 - term frequency (i.e. within the document)
 - inverse document frequency (i.e. across documents)

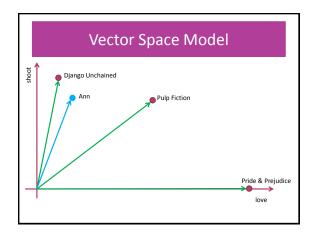
 $tfidf_t = tf_t \times idf_t$

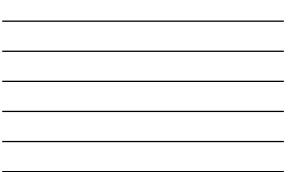
TFIDF: niceties

- There are numerous variations
 - sublinear tf scaling
 - maximum tf normalization
 - \log scaling of idf
 - cosine normalization or pivot normalization

· And we use Cosine Similarity

 $\frac{A \cdot B}{\|A\| \times \|B\|}$





Problem

- The vectors can be very long
- Solutions:
 - Preprocessing
 - · ignore stop words
 - e.g. "a", "an", "the", "in",... - e.g. the list used by SQL
 - stem
 - e.g. "laughs", "laughing", "laughed" \rightarrow "laugh" – e.g. the 🛛
 - Postprocessing
 - · keep only the most discriminating terms

More Problems

- This representation loses relationships between words in the text, e.g. their order, contiguity
 - E.g. the following are regarded as similar

 - "The secret agent jumps from the moving train..."
 "The bride's secret conversation with her travel agent..."
- Ambiguity may lead to false matches
 - e.g. different documents might be using different meanings of "bank", "train", "fire"
- Synonymy may lead to missed matches
 - e.g one document might use "spying"; another might use "espionage"

More Problems

- Lack of domain knowledge may lead to missed matches
 - e.g. one document might discuss "impressionism" another discusses "Claude Monet"
- The semantics (meaning) is not being captured
 - E.g. consider this review of a steak house
 "There is nothing on the menu to suit a vegetarian..."
 - with these two
 - "This is a meat-lover's paradise..."
 - "The vegetarian options are superb..."
 - Which is the more similar?

The Same Recommender

for each candidate item, \boldsymbol{i}

compute sim(i, u), similarity between item description and user profile

if $sim(i, u) \ge \theta$

predict "like" for item i

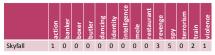
else

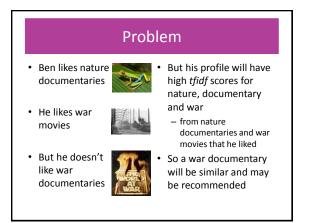
predict "dislike" for item i

recommend the candidates for which the prediction is "like" in descending order of similarity

It's dynamic!

- One nice characteristic
 - user profile is not static:
 - each time s/he shows interest in an item, that item's terms are used to update the user profile
 - e.g. after she watches Skyfall (or gives it a high rating), we update her profile using Skyfall's term vector





Solution

- Instead of a single vector, which mashes together terms from all items s/he likes...
- ...let the profile be a set of vectors, one for each item, along with her/his rating of the item
- E.g. if Clare likes *Skyfall* (4 stars) and *Pulp Fiction* (5 stars) but not *Batman Begins* (2 stars):

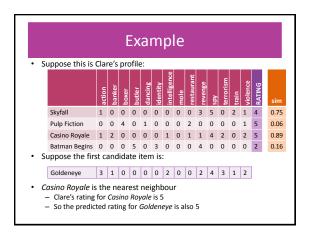
	action	banker	boxer	butler	dancing	identity	intelligence	mole	restaurant	revenge	spy	terrorism	train	violence	RATING
Skyfall	1	0	0	0	0	0	0	0	0	3	5	0	2	1	4
Pulp Fiction	0	0	4	0	1	0	0	0	2	0	0	0	0	1	5
Batman Begins	0	0	0	5	0	3	0	0	0	4	0	0	0	0	2

Regression using Nearest Neighbour

for each candidate item, i

- for each item in the user's profile, jcompute sim(i, j)
- let j^* be the nearest neighbour, i.e. the item in the profile that is most similar to i
- let the predicted rating for item i be j^* 's rating

recommend the candidates in descending order of predicted rating



Sı	uppose this is	Cla	re's	pro	ofile	:											
		action	banker	boxer	butler	dancing	identity	intelligence	mole	restaurant	revenge	spy	terrorism	train	violence	RATING	sim
	Skyfall	1	0	0	0	0	0	0	0	0	3	5	0	2	1	4	0.30
	Pulp Fiction	0	0	4	0	1	0	0	0	2	0	0	0	0	1	5	0.15
	Casino Royale	1	2	0	0	0	0	1	0	1	1	4	2	0	2	5	0.33
	Batman Begins	0	0	0	5	0	3	0	0	0	4	0	0	0	0	2	0.40
Sı	uppose the see	con	d c	and	ida	te i	ten	n is									
	Spiderman	2	0	0	0	0	3	0	0	1	1	0	1	1	1		

Example

- Of these two candidates, we recommend
 - 1. Casino Royale (predicted rating: 5 stars)
 - 2. Spiderman (predicted rating: 2 stars)
- Of course, in reality, with more candidates, we could recommend
 - just the top few, or
 - only those whose predicted rating > 3
- But, the predictions are based on just the nearest neighbour
 - can often improve accuracy by using several neighbours

Regression using k-Nearest Neighbours

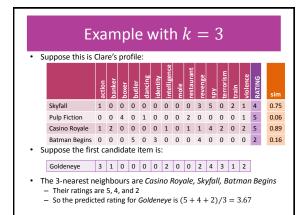
for each candidate item, i

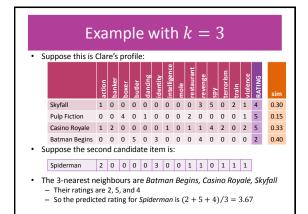
for each item in the user's profile, jcompute sim(i, j)

let NN be the set of k nearest neighbours, i.e. the k items in the profile that are most similar to i

let the predicted rating for item i be the average of the ratings in $N\!N$

recommend the candidates in descending order of predicted rating





Example

- Using more than one neighbour is a good idea
- But here, we have ended up with the same predicted rating for both candidates:
 - 1. Casino Royale (predicted rating: 3.67 stars)
 - 2. Spiderman (predicted rating: 3.67 stars)
 - The fix is to use a *weighted average*
 - weighted by similarity

predicted rating for $j = \frac{\sum_{i \in NN} sim(i, j) \times rating \text{ for } i}{\sum_{i \in NN} sim(i, j)}$

Regression using k-Nearest Neighbours

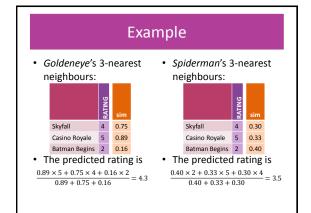
for each candidate item, i

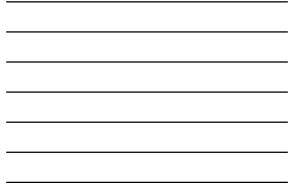
for each item in the user's profile, j

compute *sim*(*i*, *j*)

let NN be the set of k nearest neighbours, i.e. the k
 items in the profile that are most similar to i
let the predicted rating for item i be the weighted
 average of the ratings in NN

recommend the candidates in descending order of predicted rating





Discussion

- Content-based recommenders need item descriptions
- And the descriptions need to be predictive of people's tastes

• Where this works:

- e.g. new stories, web pages
- Where this is more problematic
 - books, movies, music, pieces of art,...
 - is a plot synopsis predictive?
 - are reviews predictive?

New items

When a new item becomes
 available

- it can be recommended immediately
- we don't have to wait for people to rate it
- contrast with collaborative recommenders (the cold-start problem)

New users

Discussion

- When a new user joins,
 no recommendations can be
 - made to him/her until s/he has built a user profile
 - either supplying keywords when s/he registers
 - or rating some items when s/he registers
 or rating items while using
 - the system
 - similar to collaborative recommenders

Discussion

- Content-based recommenders tend not to extend our tastes
 - they recommend items similar to ones in our profile
 - generally, no serendipitous recommendations