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Content-Based Recommenders 

• Content-based recommenders require 
descriptions 

• Item descriptions 
– assume, for now, each description is just a set of 

keywords or terms 
– e.g. for movies: genre (action, comedy,…) but maybe 

actor and director names, maybe words that describe 
the plot 

– other terminology: tags, metadata 

• User profile 
– also a set of keywords or terms that describe a user’s 

tastes 

Item Descriptions 

• Tagging an item 

– means describing it using a 
set of terms 

• Experts using a controlled 
vocabulary 
– a fixed, agreed set of terms 

– e.g. Pandora’s Music 
Genome Project 

– e.g. Netflix employs 40 
people to hand-tag TV 
shows and movies 

New York Time’s article: The Song Decoders 

http://www.nytimes.com/2009/10/18/magazine/18Pandora-t.html
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Item Descriptions 

• End-users using an 
open vocabulary 

– e.g. flickr, last.fm,… 

• Why will they do this? 

– to organize their 
collection 

– to make it amenable for 
search 

– self-expression,… 

• But can be very noisy 

User Profiles 

• Explicit 

– ask user to supply 
keywords when s/he 
registers 

• Implicit 

– add keywords to user 
profile from item 
descriptions of items in 
which s/he shows an 
interest 

Similarity 

• The similarity of set of terms 𝐴 and set of terms 𝐵  
– e.g. A = a user profile and B = an item description 
– e.g. A = an item description and B = another item 

description 

• Can be based on the size of their intersection: 
𝐴 ∩ 𝐵  

• But this gives bigger sets a greater chance of higher 
similarity 

• Better is Jaccard similarity, which normalizes by the 
size of the union: 

𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
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Example 

• How similar are 

– Skyfall and Casino Royale? 

– Tinker, Tailor and Batman Begins? 

Title Director … Terms 

Skyfall Mendes … spy, action, train, revenge, violence 

Pulp Fiction Tarantino … boxer, violence, restaurant, dancing 

Tinker, Tailor... Alfredson … intelligence, spy, identity, mole 

Casino Royale Campbell … terrorism, spy, violence, banker 

Batman Begins Nolan … revenge, butler, identity 

Term Vectors 

• We can instead represent the sets as binary vectors 
• Each position corresponds to one of the terms 
• E.g. 
  
  
  
  
 
 
 
• Compute Jaccard similarity efficiently using vector operations 

𝐴 ⋅ 𝐵

𝐴 2 + 𝐵 2 − 𝐴 ⋅ 𝐵
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Skyfall 1 0 0 0 0 0 0 0 0 1 1 0 1 1 

Pulp Fiction 0 0 1 0 1 0 0 0 1 0 0 0 0 1 

Two Kinds of Prediction 

• In AI/ Machine Learning/ 
Data Mining 

– Classification 
• predict one of a small, finite 

set of labels 

• in our case, “like”, “dislike” 

– Regression 
• predict a number 

• in our case, e.g., 1-5  

classifier 

regression 
system 
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It’s Time to Build a Recommender! 

• So, we have  

– item descriptions 

– user profiles 

–  a way of measuring similarity 

– a set of candidate items 

• For each candidate item, the recommender 
must make a prediction 

 

A classifier 

for each candidate item, 𝑖 

compute 𝑠𝑖𝑚(𝑖, 𝑢), similarity between item 
description and user profile 

if 𝑠𝑖𝑚 𝑖, 𝑢 ≥  𝜃 

predict “like” for item 𝑖 

else 

predict “dislike” for item 𝑖 

recommend the candidates for which the 
prediction is “like” in descending order of 
similarity 

Example 

Title Director … Terms 

Skyfall Mendes … spy, action, train, revenge, violence 

Pulp Fiction Tarantino … boxer, violence, restaurant, dancing 

Tinker, Tailor... Alfredson … intelligence, spy, identity, mole 

Casino Royale Campbell … terrorism, spy, violence, banker 

Batman Begins Nolan … revenge, butler, identity 

User Terms 

Ann spy, action, violence, identity 

𝒔𝒊𝒎 

3/6 

1/7 

2/6 

2/6 

1/6 

• If 𝜃 = 1/3,  
– recommend “Skyfall”, “Tinker, Tailor,…” and “Casino 

Royale” 
• in that order 

like? 

like 

dislike 

like 

like 

dislike 
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Lifting the Burden 

Problems 

• Item descriptions 
– expert tagging is expensive 

– end-user tagging is ‘uneven’ 

• User profiles 
– explicit construction on 

registration is inconvenient 
and gives profiles that are 
static 

Solutions 

• Item descriptions 
– extract terms from, e.g.: 

• book or movie plot synopsis 

• review of a restaurant,… 

• the text itself of web pages, 
news stories,… 

• User profiles 
– use terms from items s/he 

likes 

 

 

Term Frequency Vectors 

• Suppose we’re extracting the terms from a 
‘document’ 

• Instead of 0/1, we can use numeric weights that 
reflect the importance of a keyword 

• Simplest is term frequency, 𝑡𝑓𝑡  
– how often term 𝑡 appears in the document 

• E.g. 
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Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 

Problem with Term Frequency 

• Problem 

– some words will be frequent but not important 

– e.g. in a plot synopsis for a film “man”, “woman”,… 

– one sign of this is that they occur in many of the 
documents 
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Inverse Document Frequency 

• Let 𝑑𝑓𝑡 be the document frequency of term 𝑡 

– how many documents 𝑡 occurs in 

• The importance of 𝑡 is inversely related to 𝑑𝑓𝑡 

• The inverse document frequency of 𝑡 is given 
by 

         𝑖𝑑𝑓𝑡 =
𝑁

1+ 𝑑𝑓𝑡
  

    where 𝑁 is the total number of documents 

TF-IDF 

• So the weights we use in our term vectors are 
based on combining 

– term frequency (i.e. within the document) 

– inverse document frequency (i.e. across 
documents) 

 
𝑡𝑓𝑖𝑑𝑓𝑡 = 𝑡𝑓𝑡 × 𝑖𝑑𝑓𝑡  

TFIDF: niceties 

• There are numerous variations 

– sublinear 𝑡𝑓 scaling 

– maximum 𝑡𝑓 normalization 

– log scaling of 𝑖𝑑𝑓 

– cosine normalization or pivot normalization 

• And we use Cosine Similarity 
𝐴 ⋅ 𝐵

𝐴 × 𝐵
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Vector Space Model 

love 

sh
o

o
t 

Pulp Fiction 

Django Unchained 

Pride & Prejudice 

Ann 

Problem 

• The vectors can be very long 

• Solutions: 
– Preprocessing 

• ignore stop words 
– e.g. “a”, “an”, “the”, “in”,… 

– e.g. the list used by SQL 

• stem 
– e.g. “laughs”, “laughing”, “laughed” → “laugh” 

– e.g. the Porter Stemming Algorithm 

– Postprocessing 
• keep only the most discriminating terms 

More Problems 

• This representation loses relationships between 
words in the text, e.g. their order, contiguity 
– E.g. the following are regarded as similar 

• “The secret agent jumps from the moving train…” 
• “The bride’s secret conversation with her travel agent…” 

• Ambiguity may lead to false matches 
– e.g. different documents might be using different 

meanings of “bank”, “train”, “fire” 

• Synonymy may lead to missed matches 
– e.g one document might use “spying”; another might 

use “espionage” 

 
 
 

http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html
http://tartarus.org/martin/PorterStemmer/
http://tartarus.org/martin/PorterStemmer/
http://tartarus.org/martin/PorterStemmer/
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More Problems 

• Lack of domain knowledge may lead to missed 
matches 
– e.g. one document might discuss “impressionism” 

another discusses “Claude Monet” 

• The semantics (meaning) is not being captured 
– E.g. consider this review of a steak house 

• “There is nothing on the menu to suit a vegetarian…” 

         with these two 
• “This is a meat-lover’s paradise…” 
• “The vegetarian options are superb…” 

– Which is the more similar? 

 
 
 
 

The Same Recommender 

for each candidate item, 𝑖 

compute 𝑠𝑖𝑚(𝑖, 𝑢), similarity between item 
description and user profile 

if 𝑠𝑖𝑚 𝑖, 𝑢 ≥  𝜃 

predict “like” for item 𝑖 

else 

predict “dislike” for item 𝑖 

recommend the candidates for which the 
prediction is “like” in descending order of 
similarity 

It’s dynamic! 

• One nice characteristic 

– user profile is not static: 

• each time s/he shows interest in an item, that item’s 
terms are used to update the user profile 

– e.g. after she watches Skyfall (or gives it a high 
rating), we update her profile using Skyfall’s term 
vector 
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Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 
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Problem 

• Ben likes nature 
documentaries 

 

• He likes war 
movies 

 

• But he doesn’t 
like war 
documentaries 

• But his profile will have 
high tfidf scores for 
nature, documentary 
and war 

– from nature 
documentaries and war 
movies that he liked 

• So a war documentary 
will be similar and may 
be recommended 

 

Solution 

• Instead of a single 
vector, which mashes 
together terms from all 
items s/he likes… 

• …let the profile be a set 
of vectors, one for each 
item, along with her/his 
rating of the item 
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Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4 

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5 

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2 

• E.g. if Clare likes Skyfall (4 stars) and Pulp Fiction (5 
stars) but not Batman Begins (2 stars): 

Regression using Nearest Neighbour 

for each candidate item, 𝑖 

for each item in the user’s profile, 𝑗 

 compute 𝑠𝑖𝑚 𝑖, 𝑗  

let 𝑗∗ be the nearest neighbour, i.e. the item in the 
           profile that is most similar to 𝑖 

let the predicted rating for item 𝑖 be 𝑗∗’s rating 

recommend the candidates in descending order 
of predicted rating 
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Example 
• Suppose this is Clare’s profile: 

 
 
 

 
 
 
 
 
• Suppose the first candidate item is: 

 
 

• Casino Royale is the nearest neighbour 
– Clare’s rating for Casino Royale is 5 
– So the predicted rating for Goldeneye is also 5 
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Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4 

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5 

Casino Royale 1 2 0 0 0 0 1 0 1 1 4 2 0 2 5 

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2 

Goldeneye 3 1 0 0 0 0 2 0 0 2 4 3 1 2 

sim 

0.75 

0.06 

0.89 

0.16 

Example 
• Suppose this is Clare’s profile: 

 
 
 

 
 
 
 
 
• Suppose the second candidate item is: 

 
 

• Batman Begins is the nearest neighbour 
– Clare’s rating for Batman Begins is 2 
– So the predicted rating for Spiderman is also 2 

 

Spiderman 2 0 0 0 0 3 0 0 1 1 0 1 1 1 

sim 

0.30 

0.15 

0.33 

0.40 
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Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4 

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5 

Casino Royale 1 2 0 0 0 0 1 0 1 1 4 2 0 2 5 

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2 

Example 

• Of these two candidates, we recommend 
1. Casino Royale (predicted rating: 5 stars) 
2. Spiderman (predicted rating: 2 stars) 

• Of course, in reality, with more candidates, we 
could recommend 
– just the top few, or 
– only those whose predicted rating > 3 

• But, the predictions are based on just the nearest 
neighbour 
– can often improve accuracy by using several 

neighbours 
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Regression using k-Nearest Neighbours 

for each candidate item, 𝑖 
for each item in the user’s profile, 𝑗 

 compute 𝑠𝑖𝑚 𝑖, 𝑗  

let 𝑁𝑁 be the set of 𝑘 nearest neighbours, i.e. the 𝑘  
         items in the profile that are most similar to 𝑖 

let the predicted rating for item 𝑖 be the average of 
      the ratings in 𝑁𝑁 

recommend the candidates in descending order 
of predicted rating 

Example with 𝑘 = 3 
• Suppose this is Clare’s profile: 

 
 
 

 
 
 
 
 
• Suppose the first candidate item is: 

 
 

• The 3-nearest neighbours are Casino Royale, Skyfall, Batman Begins 
– Their ratings are 5, 4, and 2 
– So the predicted rating for Goldeneye is (5 + 4 + 2) 3 = 3.67  
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Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4 

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5 

Casino Royale 1 2 0 0 0 0 1 0 1 1 4 2 0 2 5 

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2 

Goldeneye 3 1 0 0 0 0 2 0 0 2 4 3 1 2 

sim 

0.75 

0.06 

0.89 

0.16 

Example with 𝑘 = 3 
• Suppose this is Clare’s profile: 

 
 
 

 
 
 
 
 
• Suppose the second candidate item is: 

 
 

• The 3-nearest neighbours are Batman Begins, Casino Royale, Skyfall 
– Their ratings are 2, 5, and 4 
– So the predicted rating for Spiderman is (2 + 5 + 4) 3 = 3.67  

 

Spiderman 2 0 0 0 0 3 0 0 1 1 0 1 1 1 

sim 

0.30 

0.15 

0.33 

0.40 
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Skyfall 1 0 0 0 0 0 0 0 0 3 5 0 2 1 4 

Pulp Fiction 0 0 4 0 1 0 0 0 2 0 0 0 0 1 5 

Casino Royale 1 2 0 0 0 0 1 0 1 1 4 2 0 2 5 

Batman Begins 0 0 0 5 0 3 0 0 0 4 0 0 0 0 2 
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Example 

• Using more than one neighbour is a good idea 

• But here, we have ended up with the same 
predicted rating for both candidates: 

1. Casino Royale (predicted rating: 3.67 stars) 

2. Spiderman (predicted rating: 3.67 stars) 

• The fix is to use a weighted average 

– weighted by similarity 

predicted rating for j =
 𝑠𝑖𝑚 𝑖, 𝑗 × rating for 𝑖𝑖∈𝑁𝑁

 𝑠𝑖𝑚(𝑖, 𝑗)𝑖∈𝑁𝑁

 

Regression using k-Nearest Neighbours 

for each candidate item, 𝑖 
for each item in the user’s profile, 𝑗 

 compute 𝑠𝑖𝑚 𝑖, 𝑗  

let 𝑁𝑁 be the set of 𝑘 nearest neighbours, i.e. the 𝑘  
         items in the profile that are most similar to 𝑖 

let the predicted rating for item 𝑖 be the weighted 
    average of the ratings in 𝑁𝑁 

recommend the candidates in descending order 
of predicted rating 

Example 

• Goldeneye’s 3-nearest 
neighbours: 

 

 

 

 

 

• The predicted rating is 

• Spiderman’s 3-nearest 
neighbours: 

 

 

 

 

 

• The predicted rating is 
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Skyfall 4 

Casino Royale 5 

Batman Begins 2 

sim 

0.75 

0.89 

0.16 

0.89 × 5 + 0.75 × 4 + 0.16 × 2

0.89 + 0.75 + 0.16
= 4.3 
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Skyfall 4 

Casino Royale 5 

Batman Begins 2 

sim 

0.30 

0.33 

0.40 

0.40 × 2 + 0.33 × 5 + 0.30 × 4

0.40 + 0.33 + 0.30
= 3.5 
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Discussion 

• Content-based 
recommenders need 
item descriptions 

• And the descriptions 
need to be predictive of 
people’s tastes 

• Where this works: 

– e.g. new stories, web 
pages 

• Where this is more 
problematic 

– books, movies, music, 
pieces of art,… 

– is a plot synopsis 
predictive? 

– are reviews predictive? 

Discussion 

New items 

• When a new item becomes 
available 

 

 
– it can be recommended 

immediately 

– we don’t have to wait for 
people to rate it 

– contrast with collaborative 
recommenders (the cold-start 
problem) 

New users 

• When a new user joins, 
– no recommendations can be 

made to him/her until s/he 
has built a user profile 

• either supplying keywords 
when s/he registers 

• or rating some items when 
s/he registers 

• or rating items while using 
the system 

– similar to collaborative 
recommenders 

Discussion 

• Content-based 
recommenders tend not 
to extend our tastes 

– they recommend items 
similar to ones in our 
profile 

– generally, no 
serendipitous 
recommendations 

 


