
Computer Communications 36 (2013) 1011–1023
Contents lists available at SciVerse ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
Improving the dynamism of mobile agent applications in wireless
sensor networks through separate itineraries
0140-3664/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comcom.2012.09.017

⇑ Corresponding author. Tel.: +34 935813577.
E-mail addresses: emercadal@deic.uab.cat (E. Mercadal), cvidueira@deic.uab.cat

(C. Vidueira), cjs@cs.ucc.ie (C.J. Sreenan), jborrell@deic.uab.cat (J. Borrell).
Estanislao Mercadal a,⇑, Carlos Vidueira a, Cormac J. Sreenan b, Joan Borrell a

a Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
b Department of Computer Science, University College Cork, Cork, Ireland

a r t i c l e i n f o
Article history:
Available online 13 October 2012

Keywords:
WSN mobile agent applications
Agilla
Separate itineraries
Emergency scenarios
a b s t r a c t

This paper introduces the deployment of a new type of mobile agent application in wireless sensor net-
works (WSNs) that implements the construct of separate itinerary, a classic concept from Concordia, a
mobile agent system in conventional distributed environments. A separate itinerary is a completely sep-
arate data structure from the agent itself, providing a simple mechanism to flexibly define and track how
an agent travels. Our contribution is twofold: First, the adaptation of separate itineraries to a highly
resource-constrained environment, i.e. Agilla agents on TelosB nodes. Second, the demonstration of this
adaptation using a new application in the field of emergency scenarios – dynamic Mobile Agent Elec-
tronic Triage Tag. This application shows the impact of fault-tolerance through the use of several agents
with different migration strategies from separate itineraries. By considering the itinerary separately from
the agent code, we gain an additional level of adaptability and reactivity in Agilla applications, similar to
that already available in WISEMAN applications.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction other authors [12,2,1] that the paradigm of mobile agents (which
A strategy to increase dynamism (reactivity) of WSNs is repro-
gramming them over the wireless network. Through this repro-
gramming WSNs no longer have to be static in their operation,
but they can adapt their behavior, reacting to the changing condi-
tions of their environment or the changing needs of their
deployers.

A couple of good surveys on WSN reprogramming systems can
be found in [1,2]. These systems can be classified according to how
the decision to reprogram is made. In a number of systems (based
either on code execution, e.g. [3,4], or code interpretation, e.g. [5,6],
or both, e.g. [7]) the reprogramming decision is determined cen-
trally at a base station, often by a human operator. However, max-
imum reactivity is reached when reprogramming decisions can be
made locally and autonomously in any node of the WSN. To this
end, a number of mobile agent middlewares for WSNs have been
proposed [8,1,9–11,2] allowing each WSN node to execute differ-
ent code (different agents), and allowing the evolution of this code.

Mobile agents are special processes that can autonomously mi-
grate or clone from node to node while maintaining their state and
are able to communicate and coordinate with other agents. Mobile
agents need an execution environment (agency) inside every node
and mechanisms to support agent communication. We agree with
has been used in conventional distributed systems since 1996
[13]) can provide great benefits in the context of WSNs. In partic-
ular, at the application level, mobile agents can be used as design
and programming abstractions through which WSN applications
can be effectively designed and implemented.

A key issue when designing WSN mobile agent applications [14]
is agent itinerary planning. WSN itinerary planning includes both
the selection of the set of WSN nodes to be visited by the mobile
agents of these applications, and the determination of the node-
visiting sequence in an energy-efficient manner WSN itinerary
planning is categorized in [14] as:

Static, where the agent itinerary is totally determined by the
sink node or base station before the agent is dispatched.

Dynamic, where the mobile agent autonomously determines the
nodes to be visited and the node-visiting sequence, according to
the current WSN status.

Hybrid, where the set of nodes to be visited is decided by the
sink, and the visiting sequence is determined dynamically by the
mobile agent.

Our interest is focused on WSN mobile agent applications, and
particularly on those applications developed over middlewares that
have been tested on actual nodes. Thus, we conducted a survey of
applications running over Agent Framework [8], Agilla [15,1], Actor-
Net [9], In-Motes [10], WISEMAN [16,11], and MAPS [2].

Among these analyzed middlewares, only WISEMAN provides
migration methodologies to support static, dynamic, and hybrid
agent itinerary planning. Itineraries in all the other middlewares

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.comcom.2012.09.017&domain=pdf
http://dx.doi.org/10.1016/j.comcom.2012.09.017
mailto:emercadal@deic.uab.cat
mailto:cvidueira@deic.uab.cat
mailto:cjs@cs.ucc.ie
mailto:jborrell@deic.uab.cat
http://dx.doi.org/10.1016/j.comcom.2012.09.017
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

1012 E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023
are either static or merely unplanned (arbitrary). Nevertheless, de-
spite this difference in the supported category of planning, in all
these analyzed middlewares itinerary specification is included in-
side the mobile agent code. In all middlewares there is at least
one migration operator (# in WISEMAN, smove in Agilla, etc.),
which receives the nodes of the itinerary through its arguments.

The same situation (itinerary included in the code of the agents)
was common in the first mobile agents systems in conventional
distributed environments, e.g. Telescript [13]. In such systems,
without extensive analysis of the code composing an agent and
some knowledge of what runtime conditions were like, it was dif-
ficult to predict the behavior of that agent. A solution was provided
by Concordia system [17] by separating agent’s itinerary from
agent’s code. A separate (Concordia) itinerary is a completely sepa-
rate data structure from the agent itself, providing a simple mech-
anism to define and track how an agent travels. See Section 2 for a
description of how flexibility of separate itineraries (their ability to
be modified at runtime) has increased from the original proposal.

The goal of this paper is twofold. First, to adapt separate itiner-
aries to a highly resource-constrained environment, i.e. Agilla
agents on TelosB nodes [18], to improve the dynamism of the
migration methodologies of Agilla applications, similarly to what
happens in WISEMAN applications. Second, to show how separate
itineraries allows us to get a new Agilla application in which agents
move globally in a WSN while deciding the node-visiting sequence
from these itineraries (in a form of hybrid planning [14]).

This application is used to bring dynamism to one of our previ-
ous JADE [19] mobile agent applications of classification of victims
in emergency scenarios (MAETT: Mobile Agent Electronic Triage
Tag). The general description of MAETT can be found in [20], and
the overall architecture of Dynamic MAETT is described in [21]. A
summary of all this background can be found in Section 3.

In Section 4 we analyze whether our proposal of including sep-
arate itineraries in the Agilla middleware is both feasible and use-
ful. We have to adapt conventional separate itineraries to the new
environment, finding room to store the itineraries, and simplifying
them to the capabilities of the middleware. This adaptation is then
used in our agent-based application Dynamic MAETT. Regarding
usefulness, we also shown in Section 4 that our application can
easily have a reactive fault-tolerant behavior just programming
its agents according to a hybrid planning. To this end, our agents
autonomously determine their node-visiting sequence in order to
(a) cope with network partitioning, and (b) skip failed or removed
nodes, and thus minimizing the probability of all of them being
caught inside a failing node.

The experimental evaluation of our proposal can be found in
Section 5, including TOSSIM/TinyViz [22] simulations, tests on a
testbed with up to 27 real TelosB nodes, and a field trial of our
application in a scenario that closely resembles a mass casualty
incident (MCI) situation. Energy consumption of our application
is also analyzed and found to be in line with other similar applica-
tions in MCI scenarios, e.g., [23]. From this evaluation we can con-
clude that the adaptation of separate itineraries to Agilla mobile
agents is both feasible (in space and time), and useful to improve
the reactivity of our application to failing nodes and partitioned
networks

2. Related work

2.1. WSN mobile agents: Middlewares and applications

As mentioned above, we are interested in those middlewares
that have been developed and tested on actual nodes, and specifi-
cally interested in their applications. For each analyzed middle-
ware we enumerate below the platforms on which has been
developed, the provided programming language for applications,
the mechanisms for communication and coordination among its
agents, and a list of its developed applications.
Agent Framework[8]

Platforms:
 Mica2dot

Prog. language:
 Maté [24] TinyScript

Coordination:
 Shared memory, network messages

Applications:
 Global data collection
Gradient search

Event tracking
ActorNet[9]

Platforms:
 Mica2

Prog. language:
 High level functional-oriented

Coordination:
 Shared memory, network messages

Applications:
 Gradient search
In-Motes[10]

Platforms:
 Mica2dot

Prog. language:
 Micro-programming

Coordination:
 Tuple spaces, agent facilitators

Applications:
 Data gathering
WISEMAN[16,11]

Platforms:
 MicaZ

Prog. language:
 Text-based codes

Coordination:
 Local (node) variables

Applications:
 Early forest fire detection
Agilla[15,1]

Platforms:
 TelosB, Mica2,
MicaZ and Tyndall 25 mm

Prog. language:
 Micro-programming

Coordination:
 Tuple spaces [25]

Applications:
 Fire detection and tracking
Monitoring cargo containers

Navigation in a dynamic environment
MAPS[2]

Platforms:
 Sun SPOT

Prog. language:
 Java

Coordination:
 Network messages

Applications:
 Remote sensor monitoring
Recently, Agilla agents are also supported by the Servilla plat-
form [26]. Servilla has been developed for heterogeneous nodes
(from Telosb to imote2) and provides different services depending
on the node.

2.2. Mobile agent itineraries

Although the itinerary concept is the same in all mobile agents
systems (route followed during mobile agent migration), there is a
significant difference when using this concept in conventional dis-
tributed environments or in WSNs. In conventional environments,
itinerary planning is basically related to the description and con-
trol of the migration (behavior) of the agents. On the other hand,
in WSNs, itinerary planning is also a way to minimize the energy
consumption of the nodes, by computing the optimal route used
by agents when traversing the WSN.

The current form of itineraries in conventional environments
[27–29] was initially proposed by Concordia [17], as a separate
data structure to hold the information of the locations to be visited
by the agent. Apart from migration instructions, agent’s itineraries
include specific code and data for each visited host. First separate
itineraries were sequential, in the sense that all platforms were vis-
ited one after the other, in the order initially specified by the

Fig. 1. MAETT triaging scenario showing the classic cardboard triage tags.

E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023 1013
programmer. To allow the programmer to define alternative
routes, flexible itineraries were introduced in [30]. Flexible sepa-
rate itineraries are composed of different types of recursive entries
allowing agents to make decisions about their travel plan at run-
time. As an example, three entry types were defined in [30]: the se-
quence, where the agent has only one possible destination after the
current platform, so no routing decision needs to be made; the
alternative, where the agent can choose its next destination from
a predefined set of platforms; and the set, where the agent has to
visit all the platforms of a predefined set in any order.

As a new step in the evolution of conventional mobile agent
itineraries, [31] presented a proposal to define and protect separate
itineraries for free-roaming agents, which involves discovering the
location of one or more destination platforms at runtime.

Regarding WSN mobile agents itineraries, optimization of en-
ergy consumption in their planning is paramount. As the problem
of finding optimal itineraries in WSNs is NP-hard [32], a lot of re-
search has been devoted to this problem, surveyed in [33]. Differ-
ent heuristics have been proposed, from the simplest ones in [34],
based on genetic algorithms in [35] or [36], to the more elaborated
ones in [33]. Multiple mobile agents’ itinerary planning is also con-
sidered in recent proposals [37,33] to allow the scalability of the
solutions to large WSNs.

As stated in Section 3, the limited size of the WSN in our in-
tended application downplays the effect of optimizing the energy
consumption in the algorithm used to compute the initial itinerar-
ies of our agents. On the other hand, our separate itineraries are
used to increase the adaptability of our application, as they facili-
tate changes in the node-visiting sequence of our agents, in a
migration methodology that supports hybrid planning [14].
3. Background

In this section we summarize the description of our previous
JADE based MAETT application. A brief description of the Agilla
WSN mobile agent middleware and of the architectural compo-
nents of Dynamic MAETT is also included.
1 http://maxfor.co.kr.
3.1. Mobile Agent Electronic Triage Tag (MAETT)

MAETT (Mobile Agent Electronic Triage Tag) [20] is a system
providing early resource allocation during emergencies when no
network infrastructure is available.

The foundation of the system is mobile agent technology [28],
which allows information to be directly transported from terminal
to neighboring terminal regardless of the status of the rest of the
network at that particular time. Handheld devices run an execution
environment for JADE agents, the platform, where mobile agents
can be created, executed and forwarded to other terminals. Are
the agents themselves who decide the route to follow depending
upon the available information on the neighbors.

The main actors of the system are the victims, the triage person-
nel or first responders, and the rescue teams (see scenario in Fig. 1,
where colored smileys represent JADE agents). Assuming victims
are scattered over an arbitrarily large area of emergency. The triage
personnel scour all this area looking for victims and triage them
according to standard methods. The result of this triage is written
on a physical tag and placed visibly on the victim. Finally, the res-
cue teams collect all the victims, prioritizing depending on triage
results. The Emergency Coordination Center (ECC) coordinates all
actions. Triage personnel, rescue teams and the ECC wear handheld
wireless devices with a JADE mobile agent platform and a GPS
receiver.

Triage personnel leave the ECC, and have an estimation on
when they will get back (Time To Return – TTR). When a victim
is found, they use the standard START method [38] and place a
cardboard triage tag (see Fig. 1) with an integrated RFID on the
neck of the victim with their evaluation written on it. At the same
time, an agent is created containing the information in the tag, plus
the GPS position of the victim and the RFID of the tag. All this infor-
mation will be used later in the ECC to optimize the route of the
rescue teams. This agent is transmitted to neighbor devices only
if the bearer has a lesser TTR. This is to make sure that moving
the information is never going to make it arrive later. Conse-
quently, all handheld devices carried by triage personnel are used
to create agents with information about found victims, and also to
forward agents corresponding to other victims. When agents arrive
to the ECC, the ECC sends the rescue teams with a detailed sche-
dule of the route based on the GPS position of victims as well as
their medical condition.
3.2. Agilla WSN mobile agent middleware

Agilla [1] is a mobile agent middleware designed to support
self-adaptive applications in wireless sensor networks. Agilla’s
model is shown in Fig. 2. Each node supports multiple mobile
agents that can move or clone across nodes while carrying their
state. To facilitate agent interactions, each node provides two data
structures, a neighbor list and a tuple space [25], a type of shared
memory accessed via pattern-matching that enables a decoupled
style of communication. Agilla also provides specialized reaction
primitives that enable agents to efficiently respond to changing
state. Prior Agilla versions addressed WSN nodes by their location,
though this restriction was removed in version 3.0.
3.3. Dynamic MAETT architecture

The problem with MAETT is that changes in victims’ medical
conditions, which have a great impact on the subsequent rescue
planning, are never conveyed to the ECC. We added dynamism to
MAETT by placing a wireless node equipped with medical sensors
in every victim, in addition to the triage tag in the MAETT scenario.

Any device able to run Agilla agents, for example those of [39],
or [23], or that in Fig. 3, manufactured by Maxfor,1 can be used to
create a WSN among neighboring victims. Agilla agents inside this
WSN can be used to dynamically update the medical status of every

http://maxfor.co.kr

Fig. 2. The Agilla model (from [1]).

Fig. 3. Watch type body monitoring device.

Fig. 4. Dynamic MAETT triaging scenario.

Fig. 5. A WSN node connected to a Nokia N810 handheld.

1014 E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023
victim and to communicate any significant change to the emergency
personnel nearby, should they are in range.

The new scenario for dynamic MAETT can be seen in Fig. 4,
where black small smileys represent Agilla agents and colored
big smileys represent JADE agents. See [21] for a full description
of Dynamic MAETT architecture.

To communicate the WSN and the handheld devices of triage or
rescue members we also need these members carry a WSN node
(Fig. 5) attached to their handheld device, also a TelosB compatible
node from Maxfor.

As every nearby victim is both paper tagged and electronically
tagged, neighboring wireless nodes belonging to the same triage
team member wirelessly connect creating a growing WSN of
victims.
When every victim in the vicinity is tagged and each body sen-
sor node monitors its own victim, the triage team member ends
the creation of his WSN. The number of nodes of each WSN is lim-
ited to lighten the medical personnel bags. Notice that every health
monitoring sensor weights about 70 g including the required two
1.5 V AA batteries. Assuming that the triaging personnel carries
the handheld device and the paper tags, they may agree to carry
the extra weight of 20–25 sensor nodes, that is, the weight of a
small laptop (i.e. �1.5 Kg).

With this limited number of nodes, and thanks to the fact that
the topology of the WSN is known (the handheld device records
the GPS position of every tagged victim), the handheld device itself
can easily compute a path through the newly created WSN by
using an optimized version of the Depth-First-Search (DFS) algo-
rithm [40,41]. The DFS computed path tries to minimize the num-
ber of visited nodes and the radio transmission. See [41] for the
complete analysis of the results of DFS execution in our handheld
device. Any other algorithm for itinerary planning [33] could be
used to compute this path, albeit the gain in energy efficiency
would be small due to the reduced size of our WSN.

The architecture presented above is the platform where our sys-
tem of mobile agents with separate itineraries is developed. In the
following section this development and its inclusion in a specific
application (Dynamic MAETT) is described.
4. Separate itineraries in Dynamic MAETT application

In this section, the core of our paper, the adaptation of separate
itineraries to Agilla middleware on TelosB WSN nodes is shown.
This adaptation has to consider memory and programming limita-
tions in this highly resource-constrained environment. This adap-
tation is then used in our agent-based application Dynamic
MAETT. First of all, an overview of the application is provided, to
subsequently enter in its details, describing how the application
is designed, with all its composing parts, i.e., the Agilla agents,
the use of separate itineraries in its mobile agents, and the memory
requirements and limits for the application. We conclude the sec-
tion showing how separate itineraries allow to improve the fault
tolerance reactive behavior of our application.

4.1. Separate itineraries for Agilla mobile agents

Computationally restricted mobile agent technologies, i.e.,
those working on low power devices, e.g. WSN nodes, have not
yet benefited from the advantages separate itineraries can provide.
These devices can also make the most of itineraries, opening new
possibilities on WSN applications.

In order to develop separate itineraries for Agilla mobile agents
we had to consider two issues:

E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023 1015
1. Where to store this separate itinerary since the memory of the
nodes is very limited.

2. How to adapt the itineraries of conventional agents to the lim-
ited execution environment of the nodes.

In regard to memory, Agilla provides three different storage
constructions:

The tuple space is a shared memory space where data is struc-
tured as tuples that are accessed via pattern-matching. In Agilla
it is primarily used for communication between agents, either
coexisting in the same node or not.
The stack is a common data structure which works as a LIFO
queue and provides only two operations push and pop. It is
fundamentally used to store application runtime variables and
instruction return values. By default it can store up to 105 bytes.
The heap is a random-access storage area that allows each agent
to store (by default) 20 variables of 16 bits each. We can access
any position of the heap with the setvar and getvar Agilla
instructions, previously pushing the desired position of the
heap onto the stack.

It is this third data structure, with its random access method
and its storage size, the most suitable place to store the itinerary.
See Section 4.5.1 for a more detailed analysis of memory limits
and maximum itinerary length inside Agilla.

As for the adaptation of the itineraries, we made two simpli-
fications regarding those of conventional agents. The first one is
to consider only entries of type sequence and alternative. Set type
entries should be implemented cloning an agent a number of
times, followed by gathering the results of cloned agents. This
is a complex issue that must be studied in more detail. Thus, a
WSN mobile agent itinerary will be a sequence of node identifi-
ers stored in the heap. The agent will move to the next node in
the itinerary, and in case the next node being unreachable, or if
the agent code decides otherwise, the agent will move to an
alternative node.

The second simplification is to consider that the same code will
be run on each node. If the code had to be different on each node it
should be stored on the heap, and the nodes should have a capacity
similar to Java reflection,2 a mechanism out of place inside those
nodes. However, despite having the same code on all nodes, it is easy
to adapt this code to specific nodes, e.g. those at the ends of the
itinerary.

4.2. Dynamic MAETT: An overview

In the first run of the first responders, every victim receives the
classic triage tag from the triaging method START [38], and it is
also equipped with a wireless body monitoring sensor node with
an Agilla agent (Victim agent). This agent periodically reads vic-
tim’s vital signs from the sensor device and runs a triaging algo-
rithm on them, maintaining an up-to-date state of the health
condition of the victim. These readings and behavior are simu-
lated in the current version of our application as we are more
interested in agent cooperation than in the actual sensing. We
recognize that developing a fully functional version of the Victim
agent is far from trivial. This agent has to monitor and process vi-
tal signs and this is a complex task, as [23,39] point out. More-
over, according to the study of memory requirements that we
perform in Section 4.5.1 (biggest agent code), the Victim agent
should be encoded in a maximum of 5808 bytes. We are currently
porting Agilla to TinyOS v.2 as a prior step to address this
development.
2 http://docs.oracle.com/javase/tutorial/reflect/.
When every victim in the vicinity is tagged and each body sen-
sor node monitors its own victim, the triage team member ends
the creation of his WSN. Moreover, the first responder handheld
computes a DFS path [41] that can be used as the itinerary of an-
other Agilla agent (Traveler agent), this time being mobile, to per-
manently travel around the WSN. The unique purpose of the
Traveler agent is to collect, if needed, the changes in victims’ con-
dition, and distributing these changes to the other WSN nodes.

Later on, when a new rescue or triage team member approaches
the WSN, and its handheld device contacts a node in the WSN, the
node attached to the handheld device uses an Extractor agent to get
the aggregated changes of all the victims’ status form the Victim
agent. As every node of the WSN has the most up-to-date state
as possible, any node of the WSN can indistinctly provide this
information. The handheld device then creates a JADE mobile agent
containing the new status of the victims, and routes it to the ECC,
as was done in MAETT.

4.3. Dynamic MAETT: Agent-based design

Our application is designed around three types of agents: the
Victim agents, the Traveler agents, and the Extractor agents. A Victim
agent resides permanently into each node of the WSN, periodically
reading victim’s node sensors and uses those readings to compute
the general health condition of the victim. To save batteries it only
gets the sensors readings and computes the summary when a Trav-
eler agent is in the same node, thus sleeping the rest of the time.

A Traveler agent is that in charge of going over every node of the
WSN collecting, aggregating and sharing victim’s health status cal-
culated by Victim agents. A Traveler agent uses the itinerary com-
puted beforehand using the first responder handheld device,
which contains a valid route through the WSN. The agent jumps
from node to node reading the general health condition of the vic-
tim previously calculated by the Victim agent. A Traveler agent also
writes the changes found in the previous nodes, thus maintaining
an up-to-date log of the whole WSN in every node. Note that a
Traveler agent only updates the already visited nodes of the ongo-
ing trip, it does not update node information from previous runs.

Finally, an Extractor agent is that residing into a first-responder
handheld, responsible for the communication and information ex-
change with the victim’s WSN when connected.

The communication between agents is done by means of Agilla
reactions, a method provided by the middleware itself that makes
the agent respond to the presence of a specific tuple in the tuple
space, preventing the agent from doing continuous polls. See
Fig. 6 for an example of reaction code. Reactions consist of a tem-
plate, a label to the callback function, and a block of code. To reg-
ister a reaction with the regrxn instruction, we first need to
specify when the reaction should fire, i.e., we need to specify the
form of the tuple. This is done by pushing the template into the
agent’s stack (pusht VALUE) and specifying its number of fields
(pushc 1). Then we have to state the name of the callback function,
i.e., indicate where to jump (pusch DORXN).

The callback function is then executed and finishes its execution
with the endrxn instruction, which returns the control to the main
program. In the sample code the callback function pops the tuple
values from the stack (2�pop) and lights the red led (pushc 25 &
putled).

In our application, when the Traveler mobile agent arrives to a
node it inserts a tuple in the node tuple space to notify of its arrival
and to instruct the Victim agent to start reading the sensors and
dump the results back to the Traveler agent. Afterwards, the Traveler
agent inserts another tuple with the information of the rest of the
WSN, to which the Victim agent responds with a FIN signal when
it has stored all the information. Fig. 7 depicts the communication
between Traveler and Victim agents illustrating how reactions work.

http://docs.oracle.com/javase/tutorial/reflect/

Fig. 6. Sample reaction code.

Fig. 7. Communication between Traveler and Victim agents using reactions.

Fig. 8. Communication between Extractor and Victim agents.

Fig. 9. A position of the heap containing two itinerary entries.

1016 E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023
The extraction of the collected data is started by the third type
of agent of our application, the Extractor. This agent starts its oper-
ation when gets in contact with any node of any WSN. The Extrac-
tor agent initiates the communication with the residing Victim
agent of a given node by pushing a tuple into the remote node’s tu-
ple space. The victim agent then dumps the whole WSN status to
the Extractor agent tuple space. When the Extractor has read the
dumped tuple it responds with a FIN signal, which releases the
communication between both agents. Fig. 8 pictures this recollec-
tion of WSN’s status by the Extractor agent.

4.4. Separate itineraries in Dynamic MAETT

Regarding our application, we designed and implemented an
itinerary construction for our WSN nodes using as little as 8 bits
per node, including the node identification (5 bits), an on/off bit
and information about the state of the monitored victim (2 bits).
It is worth noting that the itinerary is not computed to be circular,
thus, to continuously move through the WSN, the Traveler agent
has to traverse the itinerary forward and backward. With our con-
struction and taking advantage of the random access of the heap,
this can be done without having to reorder the carefully coded
itinerary.
The itinerary is then loaded into the Agilla mobile agent and is
injected into the WSN, starting its route through the sensor nodes.
For the itinerary to fit in just 8 bits we had to take some important
technical decisions, which are due to the maximum amount of sen-
sor nodes first responders carry and thus, the maximum size of the
WSN.

Our application uses the 8 bits of each itinerary position as fol-
lows (Fig. 9): 1 bit to determine if the node is active; 2 bits to store
a summary of the sensor readings; and 5 bits for the node
identifier.

Using this codification we can easily fit the maximum amount
of nodes we defined for our architecture (25) in just 13 positions
of the heap, and we still have room for some other application-re-
lated purposes.

A sample coded itinerary of 24 nodes can be seen in Fig. 10,
where each number in the first 13 instruction represents two
nodes of the itinerary, that is loaded into the nodes’ tuple space,
staying there until is retrieved by the Traveler agent.

Moreover, using 8 bits to define every step of the itinerary we
can fit two of this steps using just one position of the stack. Unfor-
tunately, this complicates the reading of an itinerary step from the
heap, forcing the division of this value and choosing the required
step after pushing it onto the stack. This division is done by shifting
the value to the right if the eight most significant bits are required.
4.5. Memory requirements

With our specifications the memory requirements of our appli-
cation are very small, leaving room in the WSN node for a broad
range of improvements. A basic Agilla installation of our applica-
tion in a TelosB node takes up 3866 bytes out of 10 kB of RAM
and 45308 default bytes out of 48 kB of ROM, increasing just 400
bytes of RAM from the Agilla installation. As for the changes done

Fig. 10. A sample coded itinerary.

E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023 1017
to the default Agilla installation to support our application the
most important are contained in:

� $AGILLA/nesc/agilla/Makefile.Agilla
– l. 1 -DAGILLA_NUM_AGENTS from 3 to 6
– l. 2 -DAGILLA_NUM_CODE_BLOCKS from 12 to 60
– l. 14 -DAGILLA_MAX_NUM_NEIGHBORS from 20 to 25
� $AGILLA/nesc/agilla/types/TupleSpace.h

– l. 45 AGILLA_MAX_TUPLE_SIZE from 20 to 48
� $TOSDIR/types/AM.h

– l. 65 #define TOSH_DATA_LENGTH from 29 to 36

These changes increase the maximum number of agents sup-
ported by a node from 3 to 6, the maximum memory used by
agent’s code from 12 to 60 code blocks (1 code block equals 22 by-
tes), the maximum number of neighbors per node from 20 to 25,
the maximum size of a tuple from 20 to 48 bytes and the length
of a TinyOS message from 29 to 36 bytes.

Agent’s code size, in bytes, is shown when the agent is injected
into a node (Fig. 11).

The injected agent is stored into the node’s reserved RAM, occu-
pying the memory needed by the code (26 blocks or 572 bytes)
plus the stack, the heap and the agent registers (248 bytes).
4.5.1. Memory limits
We can use the remaining memory in the node for various pur-

poses, either maximizing the code of the agent, maximizing the
length of the itinerary, or maximizing the number of agents inside
a WSN node.

The size of the code of an Agilla agent, stored in the RAM of the
WSN node, is determined by the number of code blocks it occupies.
We know that every basic Agilla instruction needs 1 byte, shared
by the instruction identifier and the parameter. Moreover, Agilla
supports an extended ISA, which needs two bytes for each instruc-
tion to operate. Adding the size of all the instructions of the agent’s
code we can compute the number of code blocks required for the
Fig. 11. Injection messages.
agent. This amount of memory is reserved in the node when pro-
grammed with Agilla and before injecting any agent. This will
determine the maximum total size of the agents the node will
accept.

Knowing that the size of an agent in Agilla is determined not
only by the length of its code, but also by its stack, its heap and
the tuple space, we found the maximum memory used by the men-
tioned three possible configurations:

4.5.1.1. Maximum itinerary length. We calculated the maximum of
addressable nodes using just one Traveler agent, i.e, setting the
AGILLA_NUM_AGENTS variable to 2, the AGILLA_NUM_CODE_
BLOCKS to 35 (26 for the Traveler and 9 for the Victim). This two
variables can be found in lines 1 and 2 in

$AGILLA/nesc/agilla/Makefile.Agilla.
To increase the number of addressable nodes we have to in-

crease the heap size (AGILLA_HEAP_SIZE in.
$AGILLA/nesc/agilla/types/Agilla.h), so all the itiner-

ary fits in it. It is also advised to increase the AGIL-

LA_MAX_NUM_NEIGHBORS variable, found in line 14 of $AGILLA/
nesc/agilla/Makefile.Agilla to reflect these changes, which
will allow the agents to identify a higher number of neighbors.

We found that the maximum length of the itinerary is limited
by the maximum 551 positions of the heap, filling 10238 bytes
of RAM (10kB), and allowing to address more than 29 nodes.

4.5.1.2. Biggest agent code. The largest code an agent can have in a
similar application is determined by the maximum number of code
blocks that fit in the memory of the node. In our case we are lim-
ited by the 10kB of the TelosB WSN nodes.

We found that all the 10kB of RAM memory becomes full with
an agent of 290 code blocks, i.e. 6380 bytes, using just one Traveler
and one Victim, keeping the value of 248 bytes for stack, heap and
tuple space.

4.5.1.3. Maximum number of agents. The maximum amount of RAM
of the TelosB nodes is reached with 9 agents: 8 Travelers and 1 Vic-
tim, also keeping the value of 248 bytes for stack, heap and tuple
space. This 9 agents took 217 code blocks and a total of 10152 by-
tes of RAM.

This is maybe the most interesting configuration for a triaging
application. With 8 Traveler agents the fault tolerance of the appli-
cation can be heavily improved using them with different itinerar-
ies or monitoring different sections of the WSN.

4.6. Fault tolerance
Fault tolerant mechanisms for our application are two-fold, and

both based on separate itineraries. The first mechanism consists in
moving to alternative entries in these itineraries in order to skip
failed or removed nodes. The second mechanism consists in using
several Traveler agents with different itineraries, to minimize the
probability of all agents being caught inside a failing node, and to
cope with network partitioning.

Regarding the first mechanism, when a Traveler agent finds that
the next node in its itinerary is not available, either because it is
failing or because it was attached to a removed victim, it has three
different methods to move to alternative nodes. In the first imple-
mented method, jump-after-next, the agent looks forward in the
itinerary structure and tries to migrate to the following node if it
is available and in range. If it is not, the Traveler agent decides by
a simple coin-flipping to choose the second method (random-
jump) or the third one (reverse-itinerary).

In the random-jump method, the Traveler agent gets the list of
available neighbor nodes and randomly chooses one of them for its
migration. After any of these migrations to alternative nodes the
Traveler agent resumes its sequential route from the new node.

Fig. 12. Critical node (No. 4) in a WSN configuration.

1018 E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023
In the reverse-itinerary method the trip through the itinerary is
simply reversed, just as it is done when arriving to the end node.
Note that the third method is a useful strategy because
jump-after-next tries always to go forward in the itinerary, and
random-jump also goes forward from a new random node, and
thus some backward nodes can be left unvisited in case of network
partitioning.

As for the second fault tolerant mechanism, our application can
use several (up to 8, according Section 4.5.1) Traveler mobile
agents, where each of them starts its itinerary from a different
node of the network and, preferably, follows a completely different
itinerary. This adds another layer to the tolerance against failures
of the application, increasing the robustness of the WSN in terms
of partitioning. Now it is more unlikely to end up with a part of
the WSN not being monitored due to a permanent failure of one,
or some, critical nodes.

The alternative itineraries followed by the supplementary Trav-
eler agents are also calculated in the first responders handheld,
where we have all the information about the victim’s location. In
the handheld, using DFS and choosing different starting nodes,
we can obtain different, but similarly effective, itineraries for all
the mobile agents. To prevent first responders of having to move
to several victims to inject the additional Traveler agents, we use
the same strategy as in the random-jump fault tolerance method:
each mobile agent looks for the actual node in the itinerary struc-
ture and follows its route from there.

The drawback of using more than one Traveler agent is that the
integrity of the data is not guaranteed, i.e., an agent may update
more recent data written by another Traveler agent. In our applica-
tion, where every Traveler agent is updating victim’s information at
most every 80 s (see experimental roundtrip times in Section 5)
this is not a critical issue.

A situation that we had to take into account is the meeting of
two, or more, Traveler agents into the same sensor node. If this node
fails then all Travelers inside will be lost. This is specifically serious if
the node is the only link between two clouds of nodes, as in Fig. 12
(a snapshot of a GUI used to show DFS computed itineraries in [41]).
To prevent this accumulation of mobile agents we use a token-like
solution: a special tuple is stored in the node’s tuple space. Then,
when a Traveler agent wants to migrate to a new node, it looks for
this tuple in the destination’s node tuple space. If it is available,
takes it and continues its normal execution. If another Traveler agent
has already taken the tuple, the new agent tries to move to another
node using one of the alternative methods detailed above.

Code of our application Dynamic MAETT can be downloaded
from https://senda.uab.cat/wiki/dMAETT.

5. Experimental evaluation

Experimental evaluation of our proposal of separate itineraries
built in our Dynamic MAETT application for mass casualty inci-
dents (MCI) includes TOSSIM/TinyViz simulations, tests on a test-
bed with up to 27 real TelosB nodes, and a field trial of our
application in a scenario that closely resembles a MCI situation.

The goal of the evaluation is, apart from debugging and check-
ing the correct working of every part of our application, to check
the correct behavior of all the fault-tolerant mechanisms included
in our separate itineraries, and to measure the migration times of
our Traveler agents in different WSN configurations.

We used simulations first to debug the application using TOSSIM
and TinyViz, the simulator and visualization GUI for TinyOS. Debug-
ing using this tools is not straightforward but excruciating, since
some of the messages provided by Agilla are not informative at
all, being the most common INVALID_TYPE and INVALID_SENSOR.

Having checked the correct working of every part of our appli-
cation we build a testbed with up to 27 TelosB nodes (Maxfor
MTM-CM5000-MSP and MTM-CM4000-MSP) with Agilla v.3.1.1
over TinyOS, and ran our application there to check that the results
obtained with the simulations were valid using real sensor nodes.
This move forced us to make some important changes to our de-
sign, such as moving from reactions to active waiting in the Trav-
eler agent, due to problems during their transmission, and
reducing the size of the TinyOS messages.

After verifying that real sensor nodes performed as its simu-
lated counterparts we moved our application to a real deployment
where, with the help of some colleagues, we tested our application

http://https://senda.uab.cat/wiki/dMAETT

Fig. 13. TOSSIM simulation of a circular WSN.

E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023 1019
with 15 nodes in a scenario which closely resembles a mass casu-
alty incident (MCI) situation.
5.1. Simulations
The first simulation done with TOSSIM and TinyViz was done

using a circular topology (Fig. 13) of 10, 20 and 25 nodes, with
none of them failed. There we made the first tests to our applica-
tion, solving little programming issues, problems with the stack
and with the jumps when activating the reactions, due to the size
of the code.

After verifying the correct working of the application without
failed nodes we moved a step forward and tested our application
against a more complicated scenario. There we used the same cir-
cular topology but forced the failure of some randomly chosen
nodes. Fault tolerance methods behaved as expected, avoiding
the problems of not finding the expected node and having to move
to a different one, either jumping to the subsequent node of the
itinerary or randomly jumping to a known neighbor. These
Fig. 14. TOSSIM simulation
methods also proved its correctness when the Traveler agent was
able to continue operating after an alternative migration.

Finally we simulated our application with two Traveler agents
where, in a partitioned WSN (Fig. 14), we tested its correct adapta-
tion to a failure of an important node, a node that is the only link
between two sections of the WSN. Both Traveler agents remained
in its partition of the WSN, visiting the nodes either following
the itinerary or using fault tolerance when not possible.

Simulations were used just to test the correct working of the
application. Then we moved to a testbed of nodes to check its
actual behavior.
5.2. Testbed runs
When moving the application to our testbed (Fig. 15), the first

test consisted in verifying the application to work as in the
simulations. First with all the nodes working and fully functional.
Here we perceived the problem with the Traveler agent and its
reactions. After running for an undetermined time, reactions in
of a partitioned WSN.

Fig. 15. Testbed scenario as a circular topology.

Fig. 16. Mean lap times after 10 runs.

Fig. 17. Mean lap times after 10 runs with failed nodes.

Table 1
21 node disconnected scenario with one Traveler per cloud.

Lap Total time Lap time

1 01:02.832 01:02.832
2 01:58.482 00:55.650
3 02:58.446 00:59.964
4 03:40.061 00:41.615
5 04:01.730 00:21.669

1020 E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023
the Traveler agent stopped transmitting with its bearer, resulting in
the complete stall of the application.

To solve this issue we had to move the communications done by
these reactions to an active polling method, where the agent looks
for the expected data in the tuple space. With the reaction problem
circumvented, we measured the amount of time the Traveler agent
needs to visit each and every node of the network.

Fig. 16 depicts the running times of tests conducted on 10, 15,
20 and 25 nodes WSN. The graph samples are the mean of 5 runs
of 10 roundtrips each, errorbars show the deviation of the data
in each roundtrip sample. Computing the mean of the tests we
have that our Traveler agent takes around 24.4 s to perform a full
roundtrip of the 10 nodes WSN, that is about 1.2 s per node. In
the 15 nodes WSN takes around 43.8 s, that is 1.46 s per node. In
the 20 nodes WSN around 58.1, 1.45 s per node, and in the 25
nodes WSN around 79.3 s, that is 1.59 s per node.

From the data in Fig. 16 is worth noting that the time spent in
each node and doing the migration increases as the number of
nodes increase. This is due to the bigger amount of data the agent
has to carry when the WSN enlarges, thus increasing the amount of
data computed and transferred for each node.

After having measured the behavior of our application in a test-
bed with all the nodes operational, we tested our agents against a
problematic WSN. First we benchmarked it against a WSN with
some deactivated nodes, 5 in the case of the 10 nodes WSN, 9 for
the 20 nodes one, and 11 for the 25 nodes network. This test was
intended to measure the correct working of the jump-after-next
fault tolerance method, thus never turning off two consecutive
nodes.
The results (Fig. 17) showed that our application responds very
well to problems with failing nodes, reducing the roundtrip times
by nearly the half when compared with the network with all the
nodes working. This happens because most of the time is spent
doing migrations, thus the less nodes to visit, the less migrations
to perform.

The last test we applied to the testbed was focused to measure
the response of the application against network partitioning. To
perform this test we deployed a network with two separated
clouds of 10 nodes each, only connected by a single critical node.
We injected two independent Traveler mobile agents and after that
we turned off the critical node deliberately. Each agent was left in a
different network partition, thus being disconnected from the
other part of the network. We proved that having two independent
Traveler agents with disjoint itineraries is a good solution for this
kind of situations where the itinerary is not complete in any of
the partitions and fault tolerance methods are heavily used. We
also used this scenario to measure the time needed to visit every
node of a partition, with the Traveler agent being forced to use
every fault tolerance method implemented.

In this case we consider a roundtrip done when all the nodes of
the cloud have been visited. Table 1 shows the values obtained
with these tests, where the Traveler agent has to apply every fault
tolerance method implemented. Random components of some of
these methods lead to much more variable roundtrip times, useful
only to confirm that the application is still working, but not suit-
able for benchmarking purposes.

5.3. Real world scenario
Finally we tested our application in a real world scenario, mod-

eling a MCI outside the building of our faculty (Fig. 18). We used 15
sensor nodes for our tests and we checked the correct working of
the application both with all the nodes working and deactivating
some of them. Fig. 19 was taken during the experimentation where
every individual acted as an MCI victim and carried a WSN node in
his hands. Note that the photograph was taken using a fisheye lens,
thus distances may appear distorted. Use this GPS positions for an

Fig. 18. Building scenario (same GUI as in Fig. 12).

E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023 1021
accurate view of the area of our test: (41.499727, 2.112164),
(41.500070, 2.113401).

Tests with all the nodes working carried out in this scenario
prove that what was encouraging in the testbed is also applicable
to a real scenario. The roundtrip times for the application in a net-
work with all the nodes working also show that the values ob-
tained in the testbed can be extrapolated to real scenarios. The
top line in Fig. 20 shows the results of 10 continuous roundtrips
to the WSN, being the mean of almost 39 s, i.e., a little bit more
than one second per node, a value very similar to that obtained
in the testbed.

To test the fault-tolerance overhead we conducted another test
using the same building scenario where we randomly fail 5 nodes,
never consecutive. Fig. 20 shows three graphs, one for the times of
our application running on a 15 node WSN, another one showing a
10 node WSN run, and a 15 to 10 node run. In this third graph the
first two values correspond to the WSN with all the nodes running,
following a one node per run fail until reaching the final 10 node
configuration. The figure shows that using the jump-after-next
fault-tolerance method does not increase significantly the time
Fig. 19. Field de
needed to make the full roundtrip of the WSN, see last four sam-
ples. This is because the most time consuming task of our applica-
tion are the transmissions required to migrate the traveler agent
and its data.

Tests with consecutive failed nodes have been also performed,
proving the usefulness of the application in these cases. Roundtrip
times in these situations are variable and differ a lot from those
seen in the other tests. As those in Table 1 they only confirm that
the application is still working, but are not suitable for benchmark-
ing purposes. Table 2 shows the times obtained when traveling the
building scenario network.

5.4. Energy consumption
The TelosB compatible nodes used in our application are pow-

ered by two AA batteries (3 V) and consume roughly from
19,2 mA (RX) to 20,6 mA (TX) when active, according to their
Maxfor product reference guides. Experimentally, we reached a
mean continuous operation of our application (i.e., a continuous
migration of our Traveler agents), in a scenario of 15 working nodes
with standard AA alkaline batteries, of nearly 5 days. This lifetime
ployment.

Fig. 20. Roundtrip times with nodes falling from 15 to 10.

Table 2
15 node building MCI with 5 consecutive failed nodes.

Lap Total time Lap time

1 2:26.246 2:26.246
2 4:30.442 2:04.196
3 5:47.146 1:16.704
4 6:20.464 0:33.318
5 8:02.186 1:41.722

1022 E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023
is similar to that of other existing WSN applications for emergency
scenarios [23], and fairly more time than the expected time to res-
cue triaged victims in a MCI.
5.5. Deployment issues
We observed an interesting behavior when injecting the agent in

a newly closed WSN. Some times, when testing the network against
node failures to measure the correct working of the random-jump
method, the Traveler mobile agent got lost for a while, then following
the pre-established itinerary as if nothing had happened. This issue
raised important headaches to the team, forcing to reprogram the
itinerary of the nodes, recalculate its values, etc. Finally, after some
discouraging tests a light appeared in our testbed. Not in a node from
the WSN, but in a foreign node, not used in the current test but pow-
ered on. The Traveler mobile agent, in one of its random-jumps,
reached a neighbor node out of its WSN, and jumped to it.

After some more tests with the unused nodes disconnected
everything ran as expected, finishing an, in the end, enriching
experience.

At the moment, to avoid this issue we recommend to switch off
the unused nodes before injecting the Traveler agent. This can be
done either having all nodes disconnected from the beginning,
and powering on just those necessary in the current WSN, or
switching off the unused nodes after closing the WSN and before
injecting the Traveler agent (either removing the batteries or with
the on/off switch of MTM-CM4000-MSP nodes).
6. Conclusion

The paper shows how the adaptation of conventional separate
itineraries to the Agilla middleware is both feasible (in space and
time), and useful.

Regarding feasibility, in a highly resource-constrained environ-
ment such as Agilla running on TelosB nodes, we have developed
an application in which we can store separate itineraries with a
length from 2 to 512 positions. Moreover, we experimentally found
that our mobile agent Traveler (of 820 bytes) is able to follow this
itinerary with an approximated time of migration between nodes
of 1.5 s.

Regarding usefulness, the inclusion of the separate itineraries
(with their sequential and alternative entries) in Dynamic
MAETT has shown the utility of these itineraries as they allow
the application to be very fault tolerant, reacting in front of fail-
ing WSN nodes. WSN partitions can also be easily handled by
the application just with two mobile agents following different
itineraries.

All the fault-tolerant strategies have been tested and all worked
properly, allowing to keep visiting all the nodes of all the partitions
in a variable but limited time. This time depends on the necessary
number of random jumps for the alternatives, and on the number
of coincident nodes in the different itineraries of all the Traveler
agents.

In addition, we found that the middleware Agilla (despite its
painful coding) is flexible and robust enough to support a new
application following a new approach with agents roaming the
whole WSN according to separate itineraries. These itineraries
have been easily incorporated to Agilla, and this leads us to believe
that they can also be included in other WSN mobile agent systems
running on less restrictive environments.

One of the drawbacks of our application is the need to leave the
injecting node, the one attached to the handheld device, in connec-
tion range of the created WSN. This forces the medical personnel to
use that node as part of the WSN, having to replace the injecting
node every time a new WSN is created. Albeit the injecting node
ends up working as any other node and the medical personnel does
not have to carry any extra weight for this matter, the need of
changing it every time a new WSN has to be created adds an extra
task to the medical personnel. Not leaving the injecting node in
connection range makes the application to behave strangely after
some time, to finally end up totally motionless. Without having
more Agilla internal information regarding this issue, we figured
out that the injecting node is acting as a kind of a necessary cluster
head for the WSN.

Moreover, our application is limited to operate with a single
WSN. We are working on expanding it to operate with several
independent WSN. At the moment we are adding network identi-
fiers to the itinerary construction which will serve as the basis of
a multi-network triaging system. These identifiers will as well pre-
vent the issue of the Traveler agent jumping to external nodes
when performing random jumps (see Section 5.5).

Improving the fault-tolerance of our system is in our future
plans. We are working to reach the maximum number of agents al-
lowed by Agilla to obtain more robust fault-tolerance mechanisms.
These mechanisms would be based on eight Travelers with differ-
ent itineraries. To reach optimal results these initial itineraries
could be calculated according to more complex planning algo-
rithms like those of [33].

We also plan to finish the deployment of our Dynamic MAETT
application by adding actual body sensors to our TelosB nodes in
order to conduct more realistic field trials.

As future work it could also be interesting to port our applica-
tion to other WSN mobile agent middlewares such as WISEMAN
or MAPS, to allow a direct comparison among those middlewares.
Translating our application to a TinyOS (non-agent) environment
(similar to [23]) could also be interesting to get an additional
understanding of benefits and drawbacks of using mobile agents
in WSNs.

Acknowledgments

This work was partly supported by the Catalan AGAUR
2009SGR-1224 project, the Spanish MICINN TIN2010-15764 pro-
ject, and the Irish HEA PRTLI-IV NEMBES project.

E. Mercadal et al. / Computer Communications 36 (2013) 1011–1023 1023
We would like to thank Aitor López for his collaboration when
implementing the DFS algorithm in [41].

References

[1] C.-L. Fok, G.-C. Roman, C. Lu, Agilla: a mobile agent middleware for self-
adaptive wireless sensor networks, ACM Transactions on Autonomous and
Adaptive Systems 4 (3) (2009) 1–26.

[2] F. Aiello, G. Fortino, R. Gravina, A. Guerrieri, A java-based agent platform for
programming wireless sensor networks, The Computer Journal 54 (3) (2011)
439–454.

[3] J.W. Hui, D. Culler, The dynamic behavior of a data dissemination protocol for
network programming at scale, in: Proceedings of the Second International
Conference on Embedded Networked Sensor Systems, ACM Press, 2004, pp.
81–94.

[4] A. Dunkels, B. Gronvall, T. Voigt, Contiki – a lightweight and flexible operating
system for tiny networked sensors, in: Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, LCN ’04, IEEE Computer
Society, Washington, DC, USA, 2004, pp. 455–462.

[5] P. Levis, D. Gay, D. Culler, Active sensor networks, in: Proceedings of the
Second Conference on Symposium on Networked Systems Design &
Implementation, NSDI’05, vol. 2, USENIX Association, Berkeley, CA, USA,
2005, pp. 343–356.

[6] Y. Yu, L.J. Rittle, V. Bhandari, J.B. LeBrun, Supporting concurrent applications in
wireless sensor networks, in: Proceedings of the Fourth International
Conference on Embedded Networked Sensor Systems, SenSys ’06, ACM, New
York, NY, USA, 2006, pp. 139–152.

[7] R. Balani, C.-C. Han, R.K. Rengaswamy, I. Tsigkogiannis, M. Srivastava, Multi-
level software reconfiguration for sensor networks, in: Proceedings of the Sixth
ACM & IEEE International conference on Embedded Software, EMSOFT ’06,
ACM, New York, NY, USA, 2006, pp. 112–121.

[8] L. Szumel, J. LeBrun, J.D. Owens, Towards a mobile agent framework for sensor
networks, in: Proceedings of the Second IEEE Workshop on Embedded
Networked Sensors, IEEE Computer Society, Washington, DC, USA, 2005, pp.
79–87.

[9] Y. Kwon, S. Sundresh, K. Mechitov, G. Agha, Actornet: an actor platform for
wireless sensor networks, in: Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’06, ACM,
New York, NY, USA, 2006, pp. 1297–1300.

[10] D. Georgoulas, K. Blow, In-motes: an intelligent agent based middleware for
wireless sensor networks, in: Proceedings of the Fifth WSEAS International
Conference on Applications of Electrical Engineering, AEE’06, World Scientific
and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin,
USA, 2006, pp. 225–231.

[11] S. Gonzalez-Valenzuela, M. Chen, V. Leung, Programmable middleware for
wireless sensor networks applications using mobile agents, Mobile Networks
and Applications 15 (2010) 853–865.

[12] S. González-Valenzuela, M. Chen, V.C. Leung, Chapter 4 – Applications of
Mobile Agents in Wireless Networks and Mobile Computing, Advances in
Computers, vol. 82, Elsevier, 2011. pp. 113–163.

[13] J. White, Telescript technology: mobile agents, in: J. Bradshaw (Ed.), Software
Agents, MIT Press, 1996, pp. 437–472.

[14] M. Chen, S. González-Valenzuela, V.C. Leung, Applications and design issues of
mobile agents in wireless sensor networks, IEEE Wireless Communications 14
(6) (2007) 20–26.

[15] C.-L. Fok, G.-C. Roman, C. Lu, Rapid development and flexible deployment of
adaptive wireless sensor network applications, in: Proceedings of the 25th
IEEE International Conference on Distributed Computing Systems, ICDCS ’05,
IEEE Computer Society, Washington, DC, USA, 2005, pp. 653–662.

[16] S. González-Valenzuela, S. Vuong, V.C. Leung, A mobile code platform for
distributed task control in wireless sensor networks, in: Proceedings of the
Fifth ACM International Workshop on Data Engineering for Wireless and
Mobile Access, MobiDE ’06, ACM, 2006, pp. 83–86.

[17] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, B. Peet, Concordia: an
infrastructure for collaborating mobile agents, in: K. Rothermel, R. Popescu-
Zeletin (Eds.), Mobile Agents, Lecture Notes in Computer Science, vol. 1219,
Springer, Berlin/Heidelberg, 1997, pp. 86–97.

[18] J. Polastre, R. Szewczyk, D. Culler, Telos: Enabling ultra-low power wireless
research, in: IPSN ’05 Proceedings of the Fourth International Symposium on
Information Processing in Sensor Networks, ACM and IEEE, 2005, pp. 364–369.

[19] F.L. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent Systems with
JADE, Wiley, 2007.
[20] R. Martı́, S. Robles, A. Martı́n-Campillo, J. Cucurull, Providing early resource
allocation during emergencies: the mobile triage tag, Journal of Network and
Computer Applications 32 (2009) 1167–1182.

[21] E. Mercadal, S. Robles, R. Martı́, C. Sreenan, J. Borrell, Heterogeneous
multiagent architecture for dynamic triage of victims in emergency
scenarios, in: Nineth International Conference on Practical Applications of
Agents and Multiagent Systems (PAAMS), 2011, pp. 237–246.

[22] P. Levis, N. Lee, M. Welsh, D. Culler, TOSSIM: accurate and scalable simulation
of entire TinyOS applications, in: SenSys ’03: Proceedings of the First
International Conference on Embedded Networked Sensor Systems, ACM,
New York, NY, USA, 2003, pp. 126–137.

[23] T. Gao, T. Massey, L. Selavo, D. Crawford, B. rong Chen, K. Lorincz, V. Shnayder,
M. Welsh, The advanced health and disaster aid network: a light-weight
wireless medical system for triage, IEEE Transactions on Biomedical Circuits
and Systems 1 (3) (2007) 203–216.

[24] P. Levis, D. Culler, Maté: a tiny virtual machine for sensor networks, in:
Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS-X, ACM, New York,
NY, USA, 2002, pp. 85–95.

[25] D. Gelernter, Generative communication in Linda, ACM Transactions on
Programming Languages and Systems 7 (1985) 80–112.

[26] C.-L. Fok, G.-C. Roman, C. Lu, Servilla: a flexible service provisioning
middleware for heterogeneous sensor networks, Science of Computer
Programming 77 (6) (2012) 663–684.

[27] S.S. Manvi, P. Venkataram, Applications of agent technology in
communications: a review, Computer Communications 27 (15) (2004)
1493–1508.

[28] J. Cucurull, J. Ametller, R. Martı́, Agent mobility, in: F.L. Bellifemine, G. Caire, D.
Greenwood (Eds.), Developing Multi-Agent Systems with JADE, Wiley, 2007,
pp. 115–130.

[29] J. Cucurull, R. Martı́, D. Navarro-Arribas, S. Robles, B. Overeinder, J. Borrell,
Agent mobility architecture based on IEEE-FIPA standards, Computer
Communications 32 (2009) 712–729.

[30] M. Straer, K. Rothermel, C. Maihöfer, Providing reliable agents for electronic
commerce, in: Proceedings of the International IFIP/GI Working Conference on
Trends in Distributed Systems for Electronic Commerce, Springer-Verlag,
London, UK, 1998, pp. 241–253.

[31] C. Garrigues, S. Robles, J. Borrell, Securing dynamic itineraries for mobile agent
applications, Journal of Network and Computer Applications 31 (2008) 487–
508.

[32] Q. Wu, N.S.V. Rao, J. Barhen, S.S. Iyengar, V.K. Vaishnavi, H. Qi, K. Chakrabarty,
On computing mobile agent routes for data fusion in distributed sensor
networks, IEEE Transactions on Knowledge and Data Engineering 16 (6) (2004)
740–753.

[33] M. Chen, L.T. Yang, T. Kwon, L. Zhou, M. Jo, Itinerary planning for energy-
efficient agent communication in wireless sensor networks, IEEE Wireless
Communications 60 (7) (2011) 3290–3299.

[34] H. Qi, F. Wang, Optimal itinerary analysis for mobile agents in ad hoc wireless
sensor networks, in: Proceedings of IEEE ICC, 2001, pp. 147–153.

[35] D. Massaguer, C.-L. Fok, N. Venkatasubramanian, G.-C. Roman, C. Lu, Exploring
sensor networks using mobile agents, in: Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’06,
ACM, New York, NY, USA, 2006, pp. 323–325.

[36] W. Cai, M. Chen, T. Hara, L. Shu, T. Kwon, A genetic algorithm approach to
multi-agent itinerary planning in wireless sensor networks, MONET 16 (6)
(2011) 782–793.

[37] X. Wang, M. Chen, T. Kwon, H. Chao, Multiple mobile agents’ itinerary planning
in wireless sensor networks: survey and evaluation, Communications IET 5
(12) (2011) 1769–1776.

[38] G. Super, S. Groth, R. Hook, START: simple triage and rapid treatment plan,
Hoag Memorial Hospital Presbyterian, Newport Beach, CA, 1994.

[39] O. Chipara, C. Lu, T.C. Bailey, G.-C. Roman, Reliable clinical monitoring using
wireless sensor networks: experiences in a step-down hospital unit, in:
Proceedings of the Eighth ACM Conference on Embedded Networked Sensor
Systems, SenSys ’10, ACM, New York, NY, USA, 2010, pp. 155–168.

[40] S.S. Iyengar, N. Parameshwaran, V.V. Phoha, N. Balakrishnan, C.D. Okoye,
Fundamentals of Sensor Network Programming: Applications and Technology,
Wiley-IEEE Press, 2010.

[41] E. Mercadal, S. Robles, R. Martı́, C. Sreenan, J. Borrell, Double multiagent
architecture for dynamic triage of victims in emergency scenarios, Progress in
Artificial Intelligence 1 (2) (2012) 183–191.

	Improving the dynamism of mobile agent applications in wireless sensor networks through separate itineraries
	1 Introduction
	2 Related work
	2.1 WSN mobile agents: Middlewares and applications
	2.2 Mobile agent itineraries

	3 Background
	3.1 Mobile Agent Electronic Triage Tag (MAETT)
	3.2 Agilla WSN mobile agent middleware
	3.3 Dynamic MAETT architecture

	4 Separate itineraries in Dynamic MAETT application
	4.1 Separate itineraries for Agilla mobile agents
	4.2 Dynamic MAETT: An overview
	4.3 Dynamic MAETT: Agent-based design
	4.4 Separate itineraries in Dynamic MAETT
	4.5 Memory requirements
	4.5.1 Memory limits
	4.5.1.1 Maximum itinerary length
	4.5.1.2 Biggest agent code
	4.5.1.3 Maximum number of agents

	4.6 Fault tolerance

	5 Experimental evaluation
	5.1 Simulations
	5.2 Testbed runs
	5.3 Real world scenario
	5.4 Energy consumption
	5.5 Deployment issues

	6 Conclusion

	Acknowledgments
	References

